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Abstract

These notes introduce the central theme of the course: transforming deep generative
models from systems that optimize plausibility to systems that can also deliver validity, safety,
and controllability. We will use a unified probabilistic objective: sampling (or optimizing)
with respect to a target distribution obtained by combining a base model with soft constraint
potentials and hard feasibility sets. We then develop the theoretical pillars that make
this unification meaningful reviewing (i) Energy-Based Models and the partition function
problem, including what breaks when normalizing constants are intractable and which tools
remain available; (ii) score matching and the role of score estimation in diffusion models; (iii)
convex analysis primitives (projection and proximal operators) that enable hard constraint
enforcement and differentiable optimization layers. In this introductory lecture these concepts
will be presented at a high level, with an emphasis on the overarching abstractions and the
taxonomy of constraints that will recur throughout the course.

1 Introduction

Deep generative models have become exceptionally good at producing samples that resemble real
data. In many classical uses of generative modeling, this resemblance is the central objective:
a generated object should be statistically plausible under the training distribution. For images,
plausibility is often aligned with perceptual realism; for text, plausibility is aligned with fluency
and semantic coherence; for statistical data, plausibility is aligned with matching observed
statistics. This success is anchored in a common methodological thread: learn a flexible
parametric distribution and sample from it, using architectures and training objectives that
scale [Kingma and Welling, 2014, Goodfellow et al., 2014, Ho et al., 2020, Brown et al., 2020].

In scientific and engineering workflows, however, plausibility is necessary but rarely sufficient.
The central difficulty is that downstream use typically demands validity: the output must satisfy
external constraints that are not fully captured by the data distribution alone. A bridge design
that looks like designs in the dataset may still violate stress limits; a molecule that resembles
known compounds may still be chemically invalid or non-synthesizable; a robot plan that
resembles expert demonstrations may still collide with obstacles or violate dynamics. Empirically,
these validity requirements can carve out tiny feasible regions inside a high-dimensional space of
plausible objects, making naive sampling ineffective and making post hoc filtering extremely
expensive.

To separate these notions precisely, we will treat plausibility and validity as distinct criteria.
Plausibility asks whether an output “belongs” to the learned data manifold. Validity asks whether
the output satisfies explicit requirements coming from physics, logic, safety, or operational
constraints.
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Next, we consider several scientific and engineering domains where this plausibility-validity
gap is especially pronounced, and where constrained-aware generation is essential.

1.1 Motivation through scientific and engineering applications

Protein design. Proteins are biological macromolecules that perform diverse functions, from
catalysis to signaling to structural support. Designing novel proteins with specific structures
and functions has transformative potential for therapeutics, diagnostics, and synthetic biology,
and thus has been a central target for generative modeling [Huang et al., 2021, Dauparas et al.,
2022, Anishchenko et al., 2021]. A typical protein design tasks centers around the generation of
a “backbone structure”, that is, the 3D coordinates of the protein’s atoms. This is an extremely
high-dimensional problem (typically thousands of atoms per protein) with complex constraints
and has been a huge challenge for decades [Kuhlman and Baker, 2000].

A central shift in modern protein pipelines is the coupling of structure prediction with
generative design. For example, AlphaFold demonstrated that learned geometric and evolutionary
priors can yield highly accurate structure prediction in many regimes, substantially changing
how constraints are represented and evaluated in protein modeling [Jumper et al., 2021]. On
the generative side, RFdiffusion adapted RoseTTAFold-style showed how diffusion models can
generate 3D protein backbones with motif- and target-conditioned design across monomers,
binders, and symmetric oligomers [Watson et al., 2023]. Complementarily, ProteinMPNN showed
strong empirical performance for sequence design conditioned on a backbone, and is now widely
used as a sequence proposal component in generative design pipelines [Dauparas et al., 2022].
These tools are also being integrated into end-to-end design loops, where generated backbones
are paired with sequence design and structure prediction to produce candidates for experimental
validation [Ruffolo et al., 2023, Lindert et al., 2023].

Materials generation. Materials generation often targets the problem of discovering novel
inorganic compounds or engineered microstructures with desired properties [Butler et al., 2018,
Chen et al., 2023]. The process is extremely challenging given the vast combinatorial space
of possible compositions and structures. Additionally, the validity requirements are stringent:
valid materials must satisfy strict physical and chemical constraints (stoichiometry, symmetry,
stability),

Diffusion-based generators for crystals are starting to shown increasing success in proposing
novel structures while incorporating structural priors. For example, MatterGen is a diffusion-style
generator for inorganic materials with explicit attention to stability-oriented steering [Zeni et al.,
2024]. In reported evaluations, it generated a large set of novel crystal structure candidates
with improved predicted thermodynamic stability relative to prior generative baselines, and
the resulting candidates could be prioritized for downstream validation (for example via DFT
screening) as part of an accelerated discovery pipeline. In these settings, the requirement of
physical validity is often enforced through a combination of learned potentials (predictors of
formation energy or stability) and hard symmetry constraints [Xie et al., 2021, Sun et al., 2023].
For engineered microstructures, that is, materials with complex mesoscale structures designed
for target properties, diffusion-based inpainting and related generative approaches are being used
to generate statistically consistent microstructures aligned with simulator outputs, supporting
design beyond idealized crystals [Yang et al., 2023].

It is undoubted that GenAl could enable a revolution in materials discovery, as it has in
protein design, given its potential to drastically accelerate the iteration cycles between proposal
and validation. However, the validity gap is especially pronounced here: physical stability,
synthesizability, and manufacturability are complex constraints that are not fully captured by
data distributions alone. Indeed, in typical design cycles, high-fidelity density functional theory
simulations or wet-lab synthesis are needed to validate candidates; at the same time, the absence
of reliable surrogates models for these constraints makes purely data-driven generation risky.
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Robotics and embodied decision making. Robotics generation targets the problem of
producing action sequences and motion trajectories that achieve task objectives while satisfying
stringent safety and feasibility constraints [Kober et al., 2013, Levine et al., 2020]. The process
is extremely challenging given the combinatorial and continuous explosion of possible behaviors
over time, together with partial observability and environment variability. Moreover, the validity
requirements are stringent: valid trajectories must respect system dynamics, contact and friction
constraints, collision avoidance, joint limits, and real-time latency budgets, and violations can
be catastrophic.

Diffusion-based generative policies and planners are starting to show increasing success in
proposing diverse behaviors while incorporating strong behavioral priors from data. For example,
Diffusion Policy models visuomotor control as conditional diffusion over action sequences,
demonstrating strong empirical performance on manipulation tasks and highlighting the benefit
of diffusion models in capturing multi-modal action distributions in a stable training pipeline
[Chi et al., 2023]. At the planning level, Diffuser reframes decision-making as trajectory
generation, where iterative denoising plays the role of learned trajectory optimization and
enables conditioning on goals and partial observations [Janner et al., 2022]. More recently,
foundation-model approaches such as RT-2 illustrate how large-scale vision-language pretraining
can provide a semantic prior for control, enabling language-level task specifications to influence
action selection and supporting broader generalization [Brohan et al., 2023], and multi-agent
diffusion models are emerging as a way to capture complex interaction patterns in simulated
environments [Liang et al., 2025].

It is increasingly plausible that GenAl will change robotics workflows. This is particularly
valuable because robotics problems are naturally multi-solution: there are many feasible grasps,
paths, and contact sequences for the same goal, and a generative policy can represent this
multiplicity and re-sample when constraints change or disturbances occur. However, the validity
gap is especially pronounced: sim-to-real distribution shift, unmodeled contacts, rare safety-
critical edge cases, and compounding error over time all create regimes where purely learned priors
can fail abruptly. As a result, progress hinges on explicit, independently validated constraint
enforcement that couples generative proposals to verifiers and control-theoretic structure, rather
than relying on learned scores alone [Amodei et al., 2016, Mayne, 2014].

1.2 Limitations for adoption in science and engineering and Course objective

While in all of these applications generative Al shows great promise, a common theme is that the
main practical barrier to adoption is the validity gap: the difficulty of ensuring that generated
outputs satisfy external constraints that are not fully captured by data distributions alone.
In scientific and engineering settings, these constraints are not optional preferences but first
principles that define correctness, safety, and feasibility. Proteins must fold into physically
realizable structures while meeting binding and manufacturability requirements; crystals must
satisfy symmetry, stoichiometry, and stability constraints; robot policies must respect dynamics
and collision constraints under uncertainty; and engineered systems such as chips, power grids,
and PDE-governed processes face hard design rules, conservation laws, and operational limits.
If these constraints are violated, the output is not merely suboptimal, it is invalid, and the
downstream pipeline fails, often expensively and sometimes dangerously.

The root cause is that standard generative models are trained to approximate a data
distribution, not to satisfy a specification. Even when trained on “valid” datasets, learning such
underlying distribution does not guarantee constraint satisfaction under distribution shift, novel
designs, or adversarial prompts, precisely because the feasible region defined by domain rules
can be a thin, structured subset of the ambient space.

These limitations are not artifacts of a specific architecture (Transformer versus diffusion) but
structural: native token-level likelihood objectives and denoising objectives optimize average-case
fit, not worst-case feasibility. When feasibility is rare, compositional, or global, the model can
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achieve excellent likelihood while still allocating nontrivial probability mass to invalid outputs.
This is exactly the regime encountered in the applications above, where constraints are multi-scale
and compositional, coupling local structure to global properties, and where small violations can
render the final artifact unusable. Consequently, practical deployment requires methods that
treat constraint satisfaction as a first-class component of the generative process

The course unifies these motivations under a single probabilistic objective: define a target
distribution that combines a plausibility prior with constraint factors. The goal of the course is
to bridge Generative AI (learning complex distributions) with constrained optimization
and constrained inference (enforcing requirements). Concretely, we will return repeatedly to
three organizing questions.

First, Where are constraints injected: during training, via architectural inductive bias, at
inference time, or in post-processing. Second, What mathematical form the constraint takes:
hard sets, soft penalties, logical formulas, expectation constraints, chance constraints, or hybrid
combinations. Third, How we compute: via approximate sampling, variational approximations,
or optimization.

2 The fundamental equation of constrained-aware generation

To tackle the validity gap, this course adopts a unified probabilistic framework for constrained-
aware generation. The key idea is to define a target distribution that combines a base generative
model with explicit constraint terms that encode validity requirements. Informally, we begin
from a pretrained generator that acts as a strong proposal distribution over plausible objects,
and then ¢ilt this proposal toward validity by reweighting outputs that violate requirements and
by excluding outputs that are outright infeasible.

Formally, let x € X C R denote the object to be generated (an image, a trajectory vector, a
continuous embedding, or a relaxation of a discrete object) and let ¢ denote context (a prompt,
conditioning information, target properties, partial observations). We define a target conditional
distribution 7(x | ¢) as follows:

The Fundamental Equation of Constrained Generation

G g ew(Ade) HxeC@). ()

VT
Based model (plausibility)  Soft constraints  Hard constraints

(x| c)=

The base model pg(x | c) is typically trained to approximate a data distribution or a
conditional distribution induced by a dataset, and it provides a strong prior over plausible
objects. The term ¢(x, c) is a real-valued potential that penalizes undesired properties, encodes
preferences, or measures surrogate constraint violations. It is often (but not always) differentiable,
which makes it amenable to gradient-based guidance and energy-based reweighting. Typically,
the parameter A > 0 is introduced to control the strength of this soft constraint term, trading off
plausibility and validity. Finally, the hard constraint set C(c) encodes feasibility and is represented
by an indicator; it therefore introduces non-smoothness and can induce discontinuities in 7(x | c)
because infeasible points receive zero probability mass.

During the course we will study multiple choices for each component and we will see how
different algorithmic strategies arise from different modeling decisions. Before developing the
technical pillars that support this framework, we unpack the two central aspects that govern
both theory and practice: the partition function and the constraint representation.
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1. Normalization and the partition function. The term Z(c) is the partition function (or
normalizing constant),

Z(c) = /X po(x | ) exp(~Ad(x, ) 1{x € C(c)} dx, (2)

with the integral replaced by a sum for discrete X'. Conceptually, Z(c) rescales the unnormalized
product so that 7(- | ¢) integrates to one. Practically, however, Z(c) is intractable in almost all
settings where the framework is interesting: X is high-dimensional, ¢ may be nonconvex and
learned, and the feasible region C(c) can carve out a thin subset of X'.

This intractability has three important consequences that recur throughout the course.
First, we generally cannot evaluate likelihoods under 7 because logm(x | ¢) = logpe(x |
c) — Ap(x,c) +log1{x € C(c)} —log Z(c) depends on log Z(c). Second, naive rejection sampling
from pg becomes ineffective when constraints are strict, since the acceptance probability is
essentially Z(c) relative to the mass of pg and can be exponentially small when feasibility is rare.
Third, if one attempted to learn an unnormalized model of the form 7(x | ¢) x exp(—FEpg(x;c)),
where F is an energy term (See Section 3 for more details), then Vglog Z(c) introduces a
“negative phase” expectation under 7 (- | ¢), which typically requires sampling in the inner loop
and is a primary source of computational cost in energy-based learning.

The first major conceptual pivot of the course is therefore that constrained-generation methods
should be understood as ways to sample from, or optimize with respect to, Equation (1) without
computing Equation (2). This is why we will emphasizes tools such as Langevin-type dynamics
and score-based transitions that depend on gradients of log 7w rather than its normalization,
variational approximations that trade off expected energy and entropy without requiring exact
partition function evaluation, and MCMC methods whose acceptance ratios cancel Z(c).

2. Base model as a prior, constraints as a likelihood factor. A useful way to interpret
Equation (1) is as a “Bayes-like” factorization. The base model pg(x | c) plays the role of a
prior over plausible objects, while the constraint terms act as a likelithood that favors validity. In
particular, the soft factor exp(—A¢@(x,c)) can be read as a Gibbs likelihood that rewards low-cost
configurations, and the hard indicator can be read as an infinite-penalty likelihood that rules
out infeasibility. This viewpoint clarifies why constrained generation is an inference problem: we
are effectively computing a posterior over designs given an external specification. It also clarifies
why constraints cannot be treated as an afterthought in high-stakes settings: the posterior may
place negligible mass on feasible designs unless constraint injection is explicit and strong.

Hard versus soft constraints. Hard constraints define membership in C(c) and are typically
checkable by a verifier, for example compilation success, grammar membership, satisfaction of
a set of convex inequalities, collision-free feasibility under geometric checks, or satisfaction of
a conservation law under a simulator. Soft constraints are encoded by ¢(x,c) and are more
flexible: they can represent preferences, costs, and surrogate measurements, such as toxicity
predictors, property predictors, reward models, or relaxed penalties for constraint violations.

From an algorithmic standpoint, the key distinction is that soft constraints can often be
injected through gradients (guidance) and energy reweighting, whereas hard constraints require
discrete restriction, projection/repair, or a verifier-in-the-loop mechanism. From a reliability
standpoint, the key distinction is that hard constraints can offer certifiability when verification is
correct, while soft constraints are only as reliable as the proxy ¢. This proxy dependence creates
two recurring risks. The first is misspecification: ¢ may fail to capture the true constraint,
particularly under distribution shift. The second is prozy hacking: optimization or sampling
under ¢ can exploit weaknesses of the surrogate and produce artifacts that score well under ¢
but fail under true validation.
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A recurring design choice is therefore whether to encode a requirement as hard or soft, or to
combine the two. Hard constraints are appropriate when feasibility is verifiable, but they may
be computationally expensive to enforce and may lead to low acceptance rates if enforced by
rejection. Soft constraints are computationally convenient and can be smoothly traded off with
plausibility via A, but they require careful calibration and independent verification to ensure
they correlate with true validity.

3 Energy-Based Models and the partition function problem

This section briefly discusses what an Energy-Based Model (EBM) is, why EBMs appear naturally
in constrained generation, and what the partition function prevents you from doing.

3.1 Energy Based Models: Definition

An EBM parameterizes a probability distribution through an energy function E, with probability
mass concentrated on low-energy configurations [LeCun et al., 2006, Wainwright and Jordan,
2008]. The energy function plays the role of a global score: it aggregates multiple desiderata into
a single scalar. As reviewed in Equation (1), in constrained generation, the energy naturally
decomposes into a plausibility term (coming from the base model), a soft penalty term (coming
from ¢), and a hard feasibility term (coming from the indicator of C). This decomposition
is exactly what we will exploit throughout the course: different methods implement different
approximations to sampling or optimization under the implied EBM. However, to turn energies
into probabilities we are required to compute a normalization constant (the partition function Z);
the intractability of this function is the central computational obstacle in energy-based learning.
The following definition formalizes the notion of a conditional EBM.

Definition 1 (Conditional Energy-Based Model). Given an energy function E(x;c) € RU{+o0},
an EBM defines a conditional distribution

_ exp(—FE(x;¢c))

m(x|c)= Z(c) , Z(c) = /Xexp(—E(x; c)) dx, (3)

provided Z(c) < co.

Note that Equation (1) is an EBM with energy:
E(x;¢) = —logpe(x | ¢) + Ad(x,€) + Ic(c) (%), (4)

where I¢(c)(x) = 0 if x € C(c) and +oo otherwise. This is the standard way to encode hard
constraints in energy-based inference: feasibility is represented as an infinite barrier, which
removes infeasible configurations from the support [LeCun et al., 2006, Wainwright and Jordan,
2008].

Remark 1 (Continuous vs. discrete domains). For continuous X C R?, the partition function
in Equation (3) is an integral. For discrete domains (language, graphs), it is a sum over
exponentially many configurations. In both cases, Z(c) is typically intractable, which is why we
emphasize methods that do not require evaluating it.

3.2 The partition function problem: what it blocks and why

The partition function Z(c) is the cost of converting a relative preference score (the energy)
into a normalized probability distribution. Unfortunately, Z(c) depends on all configurations
in X, not just those we observe. This dependence has two immediate consequences. First,
even if we can compute the energy of a given x, we usually cannot compute its normalized
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probability. Second, if we try to learn the energy model by maximum likelihood, the gradient
contains an expectation under the model itself, which requires sampling during training. This
“sampling-inside-learning” loop is the classic computational bottleneck of EBMs.

Thus, the partition function Z(c) blocks two operations that would otherwise be straightfor-
ward:

(1) Likelihood evaluation is unavailable. Even when E(x;c) is computable, the log-
likelihood decomposes as

logm(x | c) =—FE(x;c) —log Z(c), (5)

and log Z(c) is generally unknown. This makes direct likelihood-based evaluation and
calibration difficult for EBMs.

(2) Maximum likelihood learning introduces the negative phase. Suppose we attempt
to learn an unnormalized conditional model

ro(x | ©) o exp(—Eg(x:c)).
Then, differentiating the log-likelihood yields
Velogmg(x | ¢) = =V Eg(x;c) — Valog Zg(c). (6)

The first term depends only on the observed pair (x,c) and is often called the positive phase,
because it pushes down the energy of data configurations. The second term can be written
as a model expectation:

Ve log Zg(c) = Z:(C)Ve /eXp(—Eo(X; c)) dx = —Eyry(lc) [VoFo(x;c)]. (7)
Substituting Equation (7) into Equation (6) shows that maximum likelihood learning requires
estimating an expectation under the current model distribution mg(- | ¢). This term is
called the negative phase because it pushes up the energy of samples drawn from the model,
preventing the model from collapsing probability mass onto a small subset of configurations.
Computing it typically requires MCMC (or related sampling) in the inner loop, which is the
primary source of computational cost in classical energy-based learning [LeCun et al., 2006,
Hinton, 2002].

3.3 Inference without Z(c)

Although Z(c) obstructs likelihood evaluation and makes maximum likelihood learning expensive,
it does mot prevent us from sampling or performing approximate inference. Many inference
algorithms depend only on energy differences or energy gradients. This is why EBMs are viable
as targets for constrained generation even when they are difficult to train from scratch.

Metropolis-Hastings. Metropolis-Hastings constructs a Markov chain with stationary distri-
bution (- | ¢). Its acceptance probability involves the ratio
m(x"|c) _ exp(—E(x;¢c))/Z(c)
m(x|c)  exp(—E(x;c))/Z(c)

so the partition function cancels. This cancellation is the basic reason MCMC is the canonical
inference tool for EBMs [Robert and Casella, 2004].

= exp( — (E(X/; C) — E(X; C)))a
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Langevin dynamics and score-based transitions. If F(x;c) is differentiable (or differen-
tiable almost everywhere), Langevin dynamics defines a diffusion process that targets 7 as its
stationary distribution under standard conditions. In continuous space, the Langevin SDE is

dx; = —VxE(x4; ¢) dt + V2 dwy, (8)

where w; is standard Brownian motion. A simple Euler discretization yields the unadjusted
Langevin algorithm (ULA),

Xpi1 = Xg — NVxE(Xk;€) + /21 €, ex ~ N(0,1). 9)

The key point is that VxE does not depend on Z(c). When the energy includes a hard indicator
I¢(c), classical gradients fail at the boundary, motivating projected or reflected Langevin variants
that replace the nonsmooth term by a projection or proximal step. This connects directly to
the convex-optimization primitives developed later and to inference-time constraint enforcement
methods such as projected diffusion [Christopher et al., 2024].

Noise-contrastive estimation and score matching. Finally, although maximum likelihood
learning of EBMs is hindered by the negative phase, alternative estimation principles avoid
explicit normalization. Noise-contrastive estimation reduces density estimation to classification
between data and known noise [Gutmann and Hyvérinen, 2010]. Score matching estimates the
score Vx log p(x) without estimating p(x) itself [Hyvérinen, 2005]. These ideas are conceptually
central to diffusion models and will be revisited when we discuss score-based generative modeling
and modular constraint injection.

4 Convex analysis primitives: projection and proximal operators

As discussed in Section 2, hard constraints are represented by an indicator function that is zero
on the feasible set and +oo outside it. Even when the set is smooth, the indicator potential
is discontinuous. As a result, enforcing hard constraints frequently becomes an optimization
subproblem embedded in a generative procedure: a generative procedure produces an intermediate
candidate y that is plausible under the base model, and then we apply an operator that returns
the “smallest” modification that restores feasibility. In the convex regime, this operator has a
precise mathematical definition and enjoys strong stability properties; this is the point at which
convex analysis enters the constrained-generation story [Boyd and Vandenberghe, 2004, Bubeck,
2015].

4.1 Projection

The projection operator formalizes the intuition of minimal repair: it maps an invalid point to
the nearest valid point, with nearness measured by a chosen norm. When inserted repeatedly,
projection becomes a mechanism for maintaining validity throughout a generative trajectory,
rather than repairing only at the end.

Definition 2 (Euclidean projection). Let C C R? be nonempty and closed. The Euclidean
projection s

. 1
Proje(y) 2 argmin L [x— yl3 (10)
xeC

When C is convex, the minimizer exists and is unique [Bubeck, 2015, Boyd and Vandenberghe,
2004]. This is not a minor technicality. Uniqueness implies that projection defines a well-posed
operator Proje : R? — C that can be inserted into iterative algorithms (for sampling, optimization,
or decoding) as a deterministic feasibility correction. Moreover, projection is stable: small changes
in y cannot lead to arbitrarily large changes in Proj.(y), a property that will later underpin
differentiability and end-to-end learning through optimization layers.
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4.2 Proximal operators

Projection is a special case of a more general operator that will recur across the course in both
optimization layers and constrained sampling methods.

Definition 3 (Proximal operator). For a proper, closed, conver function f : R? — R U {400},
define
proxs(v) 2 arguain {160+ 3 - vl | (1)
xeR?

If f = I¢ is the indicator of a convex set, then prox;, = Projc. Proximal operators are the
building blocks of splitting methods such as proximal gradient and ADMM [Parikh and Boyd,
2014, Boyd et al., 2011]. Later in the course, they will also serve as the cleanest language for
discussing projected diffusion models [Christopher et al., 2024], because those methods alternate
a generative update with a projection-like correction.

4.3 Differentiable optimization layers

So far, projection and proximal steps serve as inference-time correction operators. A separate,
but closely related, idea is to embed constraint satisfaction directly into a learning pipeline by
placing an optimization problem inside the model. In that setting, the forward pass solves a
constrained problem, and the backward pass differentiates through its solution map. This is a
principled way to couple prediction and constrained decision-making, and it is one of the main
routes by which convex optimization enters modern end-to-end learning [Amos and Kolter, 2017]
[Agrawal et al., 2019].

In later lectures we will formalize when these solution maps are differentiable, how to compute
Jacobian-vector products efficiently, and how these ideas interface with constrained generation
objectives.

5 A taxonomy of constraints

7

The word “constraint” is overloaded in the generative Al literature. It may refer to a strict
feasibility requirement (a molecule must satisfy valence), a soft preference (increase aesthetic
score), a downstream objective (maximize binding affinity), or a safety policy (avoid disallowed
content). It’s important to realize that the mathematical form of the constraint is often the
single most important predictor of which algorithmic tools are appropriate and which guarantees
are even meaningful. Thus, before diving into methods, we pause to classify constraints along
three key axes. First, mathematical structure, which governs tractability and the availability
of stable operators (projection, proximal maps, dual certificates). Second, domain type, which
determines whether constraints can be enforced by continuous optimization, discrete search, or
hybrid methods. Third, verifiability, which determines whether constraint satisfaction can be

certified by an external oracle or only approximated by learned proxies.

5.1 Axis 1: mathematical structure

We classify constraints based on their mathematical representation in Equation (1), as hard set

constraints, soft penalty/energy terms, or distributional requirements.

e Hard constraints: A hard constraint specifies a feasible set C(c) C X and requires x € C(c).
In the unified target of Equation (1), this appears via the indicator 1{x € C(c)}, or equivalently
via the barrier I¢()(x) in the energy representation of Equation (4). The geometry of C(c)
drives algorithm selection. If C(c) is convex, feasibility restoration can be implemented by
the projection operator in Equation (10) and analyzed using convex-analytic tools [Boyd and
Vandenberghe, 2004, Bubeck, 2015]. If C(c) is nonconvex, projection may be ill-posed or
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multi-valued, and algorithms typically rely on relaxations, local methods, or problem-specific
heuristics.

e Penalty and energy constraints: Soft constraints specify a real-valued potential ¢(x,c)
that encodes preferences, costs, or surrogate constraint violations. In Equation (1), ¢ enters
multiplicatively as exp(—A¢), and in the EBM view it contributes additively to the energy.
When ¢ is differentiable with respect to x, it admits gradient-based injection. This will
allow us to impose guidance through Langevin-type updates and score-based methods, as we
will study later in this course. Note however that the ¢ may be only a proxy for the true
requirement; in that case, “reducing” ¢ does not imply “increasing” validity, and the resulting
system can exhibit proxy exploitation unless additional verification is present.

e Distributional constraints: Finally. some requirements are naturally expressed at the
distribution level, for example

]Exrv7r(~|c) [g(xv C)] < 7, or ]E:XNT('[g(X)] =m,

rather than pointwise constraints on individual samples. Such constraints connect to maximum
entropy and exponential-family modeling, where Lagrange multipliers introduce exponential
tilting terms that resemble the soft-constraint factor in Equation (1) [Wainwright and Jordan,
2008]. Practically, these constraints often require estimating expectations (hence sampling or
variational approximations) and raise questions about generalization under distribution shift.

5.2 Axis 2: domain type

Next we classify constraints based on the nature of the output space X. In particular, we
distinguish continuous, discrete, and hybrid domains, because the domain type determines which
algorithmic tools are available.

e Continuous domains: X C R? e.g., images, trajectories, geometric designs, physical
fields. This setting makes gradients and SDE/ODE-based samplers available, and it makes
convex constraints particularly tractable through projections and proximal maps [Boyd and
Vandenberghe, 2004, Bubeck, 2015]. Even when constraints are nonconvex, continuous
relaxations can still yield useful local correction operators.

e Discrete domains: X is combinatorial, e.g., language, code, graphs. Hard constraints
often correspond to grammars, automata, type systems, or logical theories, and enforcement
frequently reduces to constrained decoding, search, or verification-guided generation. Continu-
ous relaxations can be used as approximations, but the fundamental difficulty is that small
continuous changes do not necessarily correspond to valid discrete edits, which complicates
the direct application of gradient-based constraint mechanisms.

e Hybrid domains: X has both continuous and discrete components. This is common in
many scientific problems such as molecular design where the graph topology is discrete but
geometric conformations are continuous.

5.3 Axis 3: verifiability

Finally, we classify constraints based on whether they can be verified by an external oracle or

only approximated by learned proxies.

e Oracle-verifiable constraints: Some constraints admit an external verifier that can certify
satisfaction, such as compilation success, exact conservation laws, collision checking with a
trusted geometric model, or membership in a convex set described by known inequalities.
When such an oracle exists, constraint satisfaction can be made certifiable, either by post-
processing (projection, repair) or by verifier-in-the-loop generation. The remaining challenge
is typically computational: oracle calls may be expensive, and naive rejection can be inefficient
in high dimensions.

10
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e Learned proxies and surrogate constraints: Many practical constraints are enforced by
learned predictors: toxicity classifiers, preference models, property predictors in chemistry and
materials, and surrogate stability estimators. These proxies are often essential for scaling, but
they introduce model risk and can be exploited by the generator when used as sole objectives.
A recurring methodological theme in constrained generative Al is therefore how to combine
proxy guidance with independent verification, and how to evaluate robustness under prompt
shift, distribution shift, and adversarial inputs. In the language of Equation (1), this often
means treating ¢ as a steering signal while reserving C (or additional verifiers) for requirements
that must be satisfied with high confidence.

6 Where do constraints enter?

This course is structured around the constraint injection stage because it often determines what
is feasible computationally and what guarantees are realistic. In particular, we distinguish
four main modes of constraint injection, each with its own algorithmic tools and theoretical
underpinnings.

1. Training-time injection Training-time approaches seek to learn pg so that it places
most mass on feasible and desirable regions. One approach is to add penalties to the training
objective, another is to curate data so that constraints are reflected in the training distribution,
and a third is to train end-to-end through a downstream solver.

Decision-focused learning is a canonical solver-in-the-loop training paradigm: one trains a
predictive model so that, after a downstream optimization step, decisions are good, rather than
merely predictions [Mandi et al., 2023]. The core technical enabler is differentiating through
argmin operators, typically in convex settings where the solution map is well-behaved [Amos
and Kolter, 2017, Agrawal et al., 2019].

2. Architectural injection Architectural methods constrain the range of the model, for
example through symmetry constraints (equivariance) or structured decoders. In scientific
applications, geometric deep learning is often the architectural vehicle for enforcing invariances,
such as SE(3) equivariance in molecular and protein settings. These architectural choices can
encode constraints “by construction” but are harder to retrofit into large pretrained models.

3. Inference-time injection Inference-time methods treat pg as a prior and enforce con-
straints during generation. For diffusion models, guidance adds gradient terms to the reverse
dynamics [Dhariwal and Nichol, 2021]; for autoregressive LMs, constrained decoding restricts
token choices by a constraint automaton or a verifier. For hard continuous constraints, projected
diffusion models insert projection steps into the sampling trajectory to maintain feasibility
throughout generation [Christopher et al., 2024]. This course will emphasize inference-time
approaches because they often provide the most flexible response to new constraints without
retraining.

4. Post-processing and repair Post-processing applies a repair map R after generation,
for example projection, solver-based repair, or local refinement. Post-processing can guarantee
feasibility when the repair method is correct, but it can distort the distribution significantly
if repairs are large. A recurring principle is therefore to distribute repair across generation
steps, making each repair small. This is one way to interpret projection-at-each-step methods in
diffusion-based constrained synthesis [Christopher et al., 2024].

11



CS 6501 | L1: Overview and Taxonomy of Constraints F. Fioretto

7 Summary and outlook

Lecture 1 establishes the course’s unifying abstraction: constrained-aware generation is sampling
or optimization under a target distribution obtained by combining a base model with soft
potentials and hard feasibility sets, as formalized by Equation (1). The main theoretical obstacle
is the partition function in Equation (2), which pushes us toward methods that do not require
normalization, notably MCMC and Langevin-type dynamics, as well as learning principles
such as score matching. Hard constraints introduce nonsmoothness, motivating projection and
proximal operators and, later, differentiable optimization layers that bring convex solvers into
learning and inference.

In Lecture 2 we will build the base-model side more explicitly (maximum likelihood, latent-
variable models, and the meaning of conditional modeling), so that subsequent lectures can
clearly separate what is inherited from pg and what is introduced by constraint injection.
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