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Abstract

These notes formalize likelihood-based learning as the backbone of modern generative
modeling, and develop the latent-variable viewpoint that makes approzimate inference un-
avoidable. We begin by casting learning as density estimation and showing that maximum
likelihood is equivalent to minimizing KL(Pyata||Pe), together with an information-theoretic
interpretation of this KL as compression loss. We then review empirical maximum likeli-
hood, Monte Carlo estimation, and the decomposition of log-likelihood for autoregressive
and conditional models, together with stochastic gradient training and generalization con-
siderations.

1 Introduction

Lecture 1 framed constrained-aware generation through a target distribution that combines a
base model with soft potentials and hard feasible sets. In that framework, one does not only
train a model but also conditions and steers it at inference time. This lecture provides the
probabilistic substrate behind that view.

The main claim is that likelihood-based learning naturally leads to (i) KL-based notions
of closeness between the learned model and the data distribution, and (ii) posterior inference
problems once latent variables are introduced. These two points are inseparable from constraint
injection: constraints typically appear as additional factors that make posteriors intractable,
forcing us to approximate inference with gradients and stochastic estimators.

2 Learning as density estimation and KL divergence

We begin with the density estimation viewpoint: learning is posed as approximating an unknown
data-generating distribution with a tractable parametric model. Let X denote the sample space,
for instance X = {0,1} for a binary outcome, X = R? for continuous vectors, or X = VT for
sequences of tokens from a vocabulary V.

We assume data is generated from an unknown distribution Pg,, over X. When X is
continuous, we implicitly assume Py,, admits a density pqata With respect to a reference measure
(typically Lebesgue), and we write log Pyata(x) as shorthand for log pqata(x). Similarly, a model
Py has density pg and we use Py(x) and pg(x) interchangeably when the meaning is clear. The
parameter 8 € © indexes the model class.

We observe a dataset D = {X(i)}?ll of 1.i.d. samples from Pga.. The i.i.d. assumption is an
idealization; in sequential control or time series, observations are correlated, and one typically
works with conditional models or trajectory distributions. For the present section, the i.i.d.
abstraction is convenient because it cleanly connects expected objectives to empirical ones.
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We choose a model family M = {Py : 8 € ©} and seek a “good” approximation to Pyata-
The operational reasons for learning a distribution are threefold. First, a learned model supports
generation by sampling x ~ Py, which is the primitive required by most generative pipelines.
Second, it supports density evaluation, which enables tasks such as anomaly detection, rejection
sampling, or risk scoring through the magnitude of Pg(x). Third, it enables representation learn-
ing because internal features used to parameterize Py can serve as task-relevant summaries of x.
To formalize what it means to be “good,” we need a notion of mismatch between distributions.

2.1 KL divergence as a measure of mismatch

Definition 1 (Kullback—Leibler divergence). Let P and Q be distributions over X such that P
is absolutely continuous with respect to @Q (equivalently, Q(x) = 0 = P(z) = 0 in the discrete
case). The KL divergence from P to @ is

(1)

KL(P|Q) = Exp [mg P (X)} .

Q(x)

In the discrete case this is ) P(x)log %; in the continuous case it is the corresponding

integral over densities.

The absolute continuity condition is not a technicalitg. If there exists an event that occurs
under P but has zero probability under @, then log % becomes infinite on that event and
KL(P||Q) = +o0. In learning, this captures a concrete failure mode: if a model assigns zero (or
numerically negligible) probability to observations that do occur, the mismatch is catastrophic.

KL divergence satisfies two key properties that will matter throughout the course.

1. First, it is nonnegative, and KL(P||@Q) = 0 if and only if P = @ almost surely. A standard
proof uses Gibbs’ inequality: since log is concave:

Ep[log(Q(x)/P(x))] < log(Ep[Q(x)/P(x)]) = log(1) =0,
hence (1) is always > 0.

2. Second, it is asymmetric in general: KL(P||@Q) # KL(Q||P). This asymmetry implies that
the direction of KL matters for which errors are penalized more heavily (mode covering versus
mode seeking), which later becomes crucial when constraints shape the target distribution.

This provides an intuitive bridge from “fit a model” to “compress the data” and explains why
log-likelihood, rather than raw likelihood, is the natural objective.

It is also helpful to relate KL to cross-entropy. Define the (Shannon) entropy of P as
H(P) := —Epllog P(x)] and the cross-entropy as H(P, Q) := —Ep[log Q(x)]. Then

KL(P|Q) = H(P,Q) — H(P). (2)

Since H (P) does not depend on @), minimizing KL over @ is equivalent to minimizing the cross-
entropy H(P,Q), or equivalently maximizing Epllog Q(x)]. This identity is the mathematical
reason mazimum likelihood appears as the canonical training objective for normalized models.

2.2 Expected log-likelihood and maximum likelihood

We now connect the mismatch criterion to a learnable objective. Fix a model Py and consider
the mismatch KL(Pgatal|Pe). Expanding Definition 1 yields

KL(Pyatall Po) = Ex~Pyca [log Paata(x)] — Ex~Pyasa [log P (x)]. (3)
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The first term is —H (Pgata) and does not depend on 6. Therefore, minimizing KL divergence is
equivalent to maximizing the expected log-likelihood of the model under the data distribution:

a,rgomin KL(PyatallPo) = arg;nax Ex~p,...[log Po(x)]. (4)

This equivalence is the conceptual link between the density estimation goal and maximum like-
lihood estimation. The information-theoretic interpretation is that minimizing KL corresponds
to finding a model Py that compresses samples from Pjyat, as much as possible.

Note that, in practice, Pgata is unknown, thus we replace the expectation in (4) with its
empirical approximation over D:

max |Zl)| Z log Pp(x). (5)

This is the maximum likelihood estimator (MLE). Under mild regularity conditions and for
sufficiently expressive model families, MLE is statistically consistent: as m — oo, the empirical
objective concentrates around the population objective in (4). In finite data regimes, the gap
between the empirical and population objectives is the source of overfitting, and it motivates
regularization, early stopping, and architectural inductive bias.

The logarithm plays two roles that become important later in constrained inference. First,
it turns products into sums, which yields additive objectives and stable gradients. Second, it
heavily penalizes assigning very small probability to observed samples, because log Py(x) —
—00 as Pp(x) — 0. In density estimation language, MLE discourages “holes” in the learned
distribution at observed locations. In constraint-aware generation language, it discourages base
models whose support is misaligned with feasible regions, because such misalignment makes
posterior reweighting or projection much more difficult.

Finally, note how the objective will change once we begin injecting constraints. In the
density-estimation setting, we learn 6 by bringing Py close to Pyata in the forward direction
KL(Pyatal|Pe), which yields maximum likelihood. In the constrained-generation setting from
Lecture 1, the goal is instead to generate from a constraint-tilted target distribution m(x | ¢)
Py(x | c)exp(—A¢p(x,c)) 1{x € C(c)}, whose normalization constant is typically intractable.
Thus the computational problem becomes approximate inference under m, most commonly
posed as selecting an auxiliary distribution ¢ (over x alone or over (x,z) when latent variables
are present) by minimizing KL(g||w) within a tractable family, as we will see later throughout
the course.

Example 1 (MLE for a Bernoulli model). Consider the following example. Let X = {H,T'}
and consider a Bernoulli model Pg(H) = 0 and Pg(T) = 1 — 0. Given a dataset D of m coin
flips with ng heads, the log-likelihood is

Zlog Po(2D) = nyrlog 6 + (m — ny)log(1 — 6).
i=1

The mazimizer is 0 = ng/m. In the running example in 7, ng =3 and m =5, so 6 =0.6.

The coin example is intentionally simple: it isolates the idea that MLE selects parameters
that make the observed dataset probable under the model. Once Py is parameterized by deep
networks, the optimization is no longer closed-form, but the principle and the KL interpretation
remain unchanged. Indeed, in most deep generative models, the MLE objective (5) is nonconvex
in 0. Nevertheless, training proceeds by gradient-based optimization:

0i11 =0+ Vg <Z log PB(X)> ) (6)

xEB:
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where B; C D is a minibatch. The computational question becomes whether log Pg(x) and its
gradient can be computed efficiently. This computational tractability, more than the abstract
MLE principle itself, is what differentiates model classes (e.g., autoregressive flows versus GANs
versus Energy based models, etc.).

3 Monte Carlo estimation

Many quantities of interest in learning and inference can be written as expectations, yet closed-
form evaluation is often impossible. Monte Carlo estimation is the default computational prim-
itive for approximating such expectations. The generic recipe is: given E,.p[g(x)], sample
r1,...,x7 ~ P, and estimate with g = %Zthl g(x¢). Interestingly, this approach has 3 key
properties:

1. First, the resulting estimator g is unbiased: E[§] = E,p[g(x)].
2. Second, it converges by the law of large numbers: § — E,.p[g(z)] almost surely as T' — oc.

3. Third, its variance decreases as 1/T under mild assumptions. That is, if 02 := Var,.p(g(z)) <
00, then Var(g) = 02/T and (by the central limit theorem) vT(j — E[g]) is approximately
Gaussian for large T

This scaling is the reason Monte Carlo is the default computational primitive in modern
generative modeling: it is dimension-agnostic, but its accuracy is controlled by sample size and
variance. A recurring practical theme is therefore variance management, either by choosing g
carefully, by reparameterizing the expectation (pathwise gradients), or by introducing control
variates.

It is also important to separate two roles of Monte Carlo that will appear throughout
the course. First, Monte Carlo approximates objectives that are expectations, for example
Eflog Py(z)] or Eg,[logpe(z | 2)]. Second, Monte Carlo approximates gradients of such objec-
tives, producing stochastic gradient estimators that enable SGD and its variants. In both cases,
randomness enters as a computational device rather than as part of the modeling assumptions.

The course will reuse this primitive repeatedly. In diffusion models, Monte Carlo appears
in score matching objectives and in the discretization of SDE samplers. In latent-variable
models, Monte Carlo appears in ELBO gradients and importance sampling bounds. Finally, in
constrained inference, Monte Carlo appears when constraints are enforced through stochastic
projection, rejection, or randomized proximal operators.

4 Maximum likelihood for AR and conditional models

4.1 AR factorization and log-likelihood decomposition

Autoregressive (AR) models are the most widely used tractable likelihood family because they
reduce a high-dimensional density into a product of one-step conditional distributions via the
chain rule of probability. Let x = (z1,...,2,) be a vector or sequence, where the ordering
1,...,n is chosen by the modeler. In language modeling, x; is the i-th token; in images, x;
might be a pixel (under a raster scan order); in trajectories, z; might be a state-action pair at
time ¢ after an appropriate flattening. The chain rule states that for any joint distribution over

X’
n

Px) =[] Pi|z<i), <= (21,...,7i1). (7)

i=1
Autoregressive modeling corresponds to choosing a parameterization Pg(z; | x<;) for each con-
ditional, yielding Pg(x) = [[;-; Po(z; | #<;). Tractability here follows because evaluating Pg(x)
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only requires evaluating n conditionals, each of which is normalized in its own output space (for
instance, a softmax over a vocabulary, or a Gaussian density in R%).
Taking logs converts the product into a sum,

n
log Pp(x) = Zlog Py(z; | w<i), (8)
i=1
and this decomposition explains why AR models are natural for MLE: mazimizing the joint
log-likelihood becomes mazimizing a sum of local predictive log-likelihoods. In a discrete setting,
each term is a log-softmax score; in a continuous setting, each term is typically a Gaussian (or
mixture) log-density. For language models, (8) is the token-level cross-entropy objective used
in pretraining.

Example 2 (Language modeling). Let x = (x1,...,xy,) be a sentence with tokens x; € V. A
Transformer parameterizes Pg(x; | x<;) by mapping the prefix x~; to logits h; € RV and then
applying a softmax. The contribution of position i to the log-likelihood is log Py(x; | x<;) =
h;[z;] —log > oy exp(hi[v]), so the joint likelihood is the sum of these per-token terms.

Example 3 (Trajectory as an AR model). Let x represent a trajectory x = (so, ag, $1,a1, - - -, ST),
flattened into a length-n sequence. An autoregressive policy model can represent Pg(x) by pre-
dicting each next element conditioned on the past, for example Pg(as | s<t,a<t) and Pg(si+1 |
s<t,a<t). Even when one ultimately cares about Pg(ao.r—1 | So,goal), this AR factorization
provides a likelihood that is easy to train and evaluate, which later enables constraint-aware
inference through reweighting, guidance, or projection.

On a dataset D = {xU )}’j":l, the empirical log-likelihood is

m n

09) = > log Pa(at’ | 2Y)). (9)

j=1i=1

If each conditional Pg(z; | x<;) had its own independent parameter block, then (9) would de-
couple across ¢ and could be optimized as n separate problems. This is rarely desirable: it would
prevent generalization across positions, and it would scale parameters linearly with n. Modern
AR models therefore rely on heavy parameter sharing, for example a single Transformer with
causal masking for all positions, or a convolutional architecture. From the optimization stand-
point, this means Vgl(0) aggregates gradient contributions from all positions and all examples
through the shared network, which is exactly what backpropagation computes efficiently.

Remark 1. A subtle but important point is that AR tractability is asymmetric with respect to
evaluation versus sampling. Fvaluation of Pg(x) is parallelizable across positions once the model
has computed hidden states, but sampling is inherently sequential because generating x; requires
having already generated x ;. This asymmetry foreshadows later lectures: constraints that refer
to global properties of x are difficult to enforce when sampling proceeds token-by-token, which
is one reason alternative generative families (diffusion, flow matching) can be advantageous for
global control.

4.2 Stochastic gradients for large datasets

When m is large, evaluating the full gradient of (9) is expensive because it requires a full pass
over the dataset. Stochastic gradient methods approximate the population objective by sam-

(4) |
i
$(<JZ)), so that £(0) = > ", £;(8). If B C {1,...,m} is a minibatch sampled uniformly without
replacement, then

pling a minibatch. Formally, define the per-example log-likelihood ¢;(6) = >, log Py(z

ViO) = %ngej(e) (10)
jEB
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is an unbiased estimator of the full gradient Vgf(€). Note that this is exactly Monte Carlo
estimation with the dataset-induced empirical distribution: the random variable is the index j,
and g(j) = Vel;(0).

4.3 Conditional modeling as a proxy for control

In constrained-aware generation, we nearly always model conditionals. Let ¢ represent context,
a goal, a prompt, or an observation history, and let y represent the object we wish to generate
(a completion, an action sequence, a design, or a plan). A conditional model specifies Py(y | c)
and is trained by minimizing the conditional negative log-likelihood

. 1
min D Z —log Py(y | ©). (11)
(c,y)eD

This objective is the conditional analogue of the KL minimization in the previous section. In
particular, minimizing (11) corresponds (in the population limit) to minimizing KL(Pyata(y |
c)|| Po(y | c)) averaged over c. If the task only requires predicting y from c, then learning the
conditional suffices and one need not model the full joint distribution P(c,y).

The connection to control is that many control objectives can be cast as conditional gen-
eration. If ¢ encodes the available information at decision time (state, observations, goal),
then sampling y from Py(y | ¢) produces candidate decisions. This is why conditional density
estimation is often described as a probabilistic formulation of behavioral cloning or imitation
learning.

Example 4 (Trajectory generation as conditional density estimation). Lety = (uy,...,ur) be
an action sequence and c include an initial observation oy, a goal description g, and possibly
a coarse plan or map information. A conditional model Py(y | ¢) is a generative policy: sam-
pling from it yields candidate control sequences. If the model is autoregressive, it factorizes as
Po(y | €) = [T/—, Po(us | u<s,c), so training decomposes into a sum of per-time-step prediction
losses, while generation proceeds sequentially. In later lectures, feasibility constraints (collision
avoidance, terminal sets, resource budgets) will be represented as additional factors that reshape
this conditional distribution at inference time, which raises the central tension: constraints are
often global in y, whereas AR sampling is local in t.

Example 5 (Conditional generation in language as “control” by prompting). In an LLM, c

is the prompt and y is the continuation. The conditional AR factorization is Pp(y | ¢) =

Lgl Po(y; | ¢,y<;i). Prompting, system instructions, and in-context examples are forms of

specifying c. Hard constraints, however, such as requiring that certain facts be correct or that a
generated plan be feasible under external rules, generally cannot be guaranteed by conditioning
alone, which motivates the constraint-injection mechanisms developed later in the course.

5 Generalization, overfitting, and the role of restrictions

The objective studied so far is maximum likelihood, equivalently the minimization of the forward
KL(Pyatal| Po). This objective is defined at the population level through an expectation under
Pjata, but in practice we optimize its empirical approximation over a finite dataset D.

Generalization refers to the gap between these two quantities: a model generalizes if
its empirical log-likelihood is a good proxy for its expected log-likelihood under fresh draws
from Pyata. Overfitting occurs when the model achieves high likelihood on D while assigning
substantially lower likelihood to unseen samples from the same source.

Maximum likelihood can overfit when the model class is too expressive relative to the dataset
size. A useful way to state this is that the hypothesis space M = { Py} can have enough degrees
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of freedom that many distributions fit the finite sample well. In the extreme limit, the model can
memorize: for discrete domains one can assign essentially all probability mass to the training
set and negligible mass elsewhere. Such a model obtains near-optimal empirical likelihood
while being useless for generation or inference because it fails to place probability on valid
but unseen outcomes. Even in continuous domains, expressive models can behave similarly by
concentrating density in narrow regions around training points, yielding high training likelihood
but poor robustness.

The reason restrictions help is that they reduce the space of distributions compatible
with the training data. From the statistical viewpoint, restricting the hypothesis class reduces
variance and improves concentration of empirical estimates around their expectations. From
the modeling viewpoint, restrictions encode inductive bias: they express assumptions about
smoothness, invariances, compositional structure, or locality that are not explicit in the likeli-
hood objective but are essential for learning from finite data.

The classical bias-variance tradeoff summarizes the tension. If the hypothesis space is too
small, even infinite data may not allow Py to approximate Py,., well; this manifests as approzi-
mation error or bias. If the hypothesis space is too large, finite datasets admit many parameter
values with similar training likelihood but different population likelihood; this manifests as vari-
ance. While bias-variance is most familiar in supervised regression, the same idea applies here
if we interpret each conditional term in an autoregressive model as a prediction problem and
the overall negative log-likelihood as an average prediction loss.

Example 6 (Parameter sharing as a restriction in autoregressive models). In an AR model,
if each conditional Py(x; | x<;) had independent parameters, one could fit each position nearly
independently, which increases variance and encourages memorization of position-specific traits.
A Transformer imposes strong sharing across positions and across examples, forcing the model
to reuse features and patterns. This restriction is an inductive bias that often improves gener-
alization even though it does not change the formal MLE objective.

In practice, restrictions are implemented through architectural choices (weight sharing, lim-
ited depth or width, convolutional locality, attention patterns), explicit regularization (weight
decay, dropout, spectral norms), and implicit regularization induced by optimization (early
stopping, learning-rate schedules).

In constrained-aware modeling, these considerations have an additional interpretation that
will recur in later lectures. Constraints typically reshape the distribution at inference time,
yielding a target m(x | c) that can differ substantially from the training distribution. If Py
has overfit to features of D, then small changes induced by constraints can push inference into
regions where the model has not learned a stable likelihood geometry, causing brittle behavior
and unreliable gradients. Regularization and architectural restrictions therefore do not only
prevent overfitting in the classical sense; they also improve the smoothness and robustness of
the learned generator, which is essential when constraint injection induces distribution shift,
reweighting, or projection during inference.

6 Looking ahead

Lecture 3 will build on this foundation by comparing latent-variable models (VAEs) to implicit
models (GANs) and by highlighting which training objectives do and do not yield tractable
likelihoods. From the course perspective, the enduring message from Lecture 2 is that constraint-
aware generation lives inside approximate inference, and approximate inference is built from KL
identities, Monte Carlo estimators, and differentiable computations.
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