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Abstract

In Lectures 1 and 2, we framed generative modeling as approximate inference under a
target distribution that may include hard or soft constraints. We emphasized likelihood-
based modeling and latent-variable formulations as the first systematic tools for controlling
generation through probabilistic structure. This lecture focuses on two canonical model
families that depart from fully explicit likelihoods in different ways: variational autoencoders
(VAEs) and generative adversarial networks (GANSs). Both families introduce mechanisms
that can be interpreted as weak control: they shape the support, geometry, or statistics of
generated samples, but do not provide explicit feasibility objectives with respect to external
constraints.

1 Latent-variable models

We recall from Lecture 2 that a latent-variable model specifies a joint distribution over observa-
tions « € X and latent variables z € Z and induces the marginal

po(x) = /pg(a; | 2) p(z)dz, (1)

where p(z) is a prior and py(z | z) is a conditional likelihood (decoder). This decomposition is
attractive because it allows us to represent a complex py(x) using simpler building blocks. In
particular, if z captures the dominant factors of variation, then py(z | z) can be chosen to have
a comparatively simple form (for instance a factorized Gaussian or Bernoulli likelihood), while
the marginal py(x) can still be highly expressive due to the mixing induced by integrating out z
[2]. As an example, if = is an image of a person and z is low-dimensional, such as describing
the eye color, hair style, and pose, then py(z | z) can be interpreted as a local model around
the manifold defined by z, and integrating over p(z) blends these local models into a global
distribution over X' [6, 8].

The central technical obstacle is inference. When z € R?, the marginal likelihood involves a
high-dimensional integral,

pa(z) = / po(z | 2)pl2) dz, (2)

and the posterior normalization constant is given by the same integral. Even if both pg(z | 2)
and p(z) have simple closed forms, the integral typically does not admit a closed-form expression
once py(x | z) is parameterized by a neural network. Moreover, gradients of log pg(x) require
differentiating through this integral, which entails computing expectations with respect to the
true posterior pg(z | x), itself defined only implicitly through the intractable normalization
constant:

_ polz|2)p(2)
po(z|z) = fpe(iﬁ |2 p(2) dz” (3)
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Even when py(x | z) and p(z) are tractable, the denominator in (3) couples all latent configurations
and is typically intractable in high dimensions [2].

For discrete latent variables, the difficulty is combinatorial. Suppose z € {0,1}% is a vector
of d binary latent features. Evaluating the marginal likelihood or the posterior normalization
constant requires summing over all 2¢ possible configurations,

pg(aj‘) = Z pg(l‘,Z), (4)

2€{0,1}4

which becomes computationally infeasible even for moderate d. This phenomenon already
appears in classical mixture models: if z indexes K mixture components, then posterior inference
requires evaluating K likelihood terms for each datapoint. In deep latent-variable models, where
z may represent dozens or hundreds of latent factors, this exponential scaling makes exact
summation impossible.

In both cases, the core issue is the same: posterior inference requires aggregating contributions
from all latent configurations that are consistent with a given observation. For discrete latents
this aggregation takes the form of an exponentially large sum, while for continuous latents it
takes the form of a high-dimensional integral with no analytic solution. This is the reason why
approximate inference techniques are required. The variational framework introduced next can
be understood as a principled way to replace this intractable posterior with a tractable surrogate
that can be optimized efficiently [2, 6, 8, 3].

2 Variational inference and the ELBO

Given data & ~ Ddata, maximum likelihood learning seeks parameters 6 that maximize E,__, . [log pg(x)].
For a latent-variable model, using (1) we have log pg(z) = log [ pg(z | z) p(2) dz. As mentioned
above, the obstacle is the marginal likelihood integral inside the logarithm.

How the ELBO addresses intractable marginal likelihoods. The key idea of variational
inference is to replace the intractable quantity log pg(x) with a tractable lower bound that can
be optimized instead. We do this by introducing a variational distribution g4(z | z) that is easy
to sample from and evaluate; the resulting objective is called the evidence lower bound (ELBO).
The ELBO is constructed so that

L(x;0,¢) < logpe(x) and L(xz;0, ) is tractable, (5)

meaning that maximizing £ increases a guaranteed lower bound on the true log-marginal
likelihood. Importantly, the ELBO depends only on expectations under g4(z | ) and on terms
log pg(x | z), logp(2), and log g4 (2 | ), all of which are chosen to be computationally manageable.
In this way, the ELBO sidesteps the need to evaluate the intractable integral in (1) directly.

Jensen’s inequality and the ELBO derivation. To derive the bound, we begin by multi-
plying and dividing the integrand by g4(z | x):

pg(l’,Z) pg(a:,z)
mio) = [ ads = o0 2ED e = By | L) @
Taking logs gives
Do (.’B, Z) :| (7)
(2 | ) ]|’
At this point, the intractability is precisely that we have a log of an expectation. Jensen’s
inequality for a concave function f states that

FENY]) = E[f(Y)]. (8)

Inge(x) = 10gEz~q¢(-|a})|:
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Since log(+) is concave, applying Jensen to (7) yields

We define the right-hand side to be the ELBO [2]:

L(:0,8) 2 By [log m} (10)

Combining (7) and (9) gives the fundamental guarantee
logpg(z) = L(x30,0). (11)

Expanding the joint as py(z,z) = po(z | 2) p(2), the ELBO becomes [6, §]

L(2;0,9) = Eq,(:pnllogpo(z | 2)] = KL(gg(2 | 2) [ p(2)) - (12)

This form makes the tractability explicit: the expectation is taken under g4(z | x), and the KL
term involves g, and p only. No evaluation of [ py(z, z) dz is required.

Tightness and the variational gap. A complementary identity clarifies when the bound is
tight:
logpo(z) = L(z;0,0) + KL(ge(z | 2) [ po(z | 7)) (13)

Because the KL divergence is nonnegative, the ELBO is always a lower bound, and it becomes
exact if and only if g4(z | ) = py(z | =) almost everywhere. Thus, optimizing the ELBO
simultaneously (i) increases a guaranteed surrogate for the intractable log pg(z) and (ii) learns
an approximate inference model that reduces the gap to the true posterior.

Dataset objective. For a dataset D = {z(1M  VAE training maximizes the empirical

ELBO
M

max } L(z1:6,6), (14)
=1

which yields a tractable learning criterion that avoids evaluating intractable marginal likelihoods
while still providing a principled connection to maximum likelihood through the lower-bound
guarantee [6, 8, 3, 2].

3 Conditional VAEs and structured priors

Conditional VAEs extend the latent-variable framework by incorporating side information ¢ that
specifies context, desired attributes, or partial observations [6, 2]. The conditional marginal is

polz | ¢) = / pole | 2,0) plz | ) dz, (15)

and learning proceeds by maximizing a conditional ELBO that replaces the intractable posterior
po(z | @, c) with an amortized approximation gg(z | z,c) [6, 8]:

logpg(z [ ¢) > By, (zlec)logpo(z | 2,¢)] — KL(gg(z [ z,¢) [ p(2 | ¢)) . (16)

Algorithmically, conditioning is implemented by feeding ¢ into both encoder and decoder, so that
inference produces a context-dependent latent code and generation maps (z, ¢) into an output x.



CS 6501 | L3: VAEs and GANs F. Fioretto

Conditioning provides a first, practically important mechanism for control. In vision, ¢ might
specify a class label; in inverse problems, ¢ might be a partial observation or a measurement
operator; in control and design, ¢ might encode a goal specification, environment parameters, or
task descriptors. This viewpoint aligns directly with the constrained-aware target distribution
from Lecture 1: conditioning modifies the base model py(z | ¢) so that “preference” information
enters generation through the likelihood term rather than only through post-processing.

The prior also becomes a design lever. The simplest choice is p(z | ¢) = N(0, I), independent
of ¢, which encourages a single shared latent geometry across all contexts. More expressive
structured priors bias the latent space toward multimodality and interpretability. A common
example is a mixture prior,

K

p(z]e) = Y mle) N (2 pule), Zi()), (17)

k=1

which can represent distinct “modes” of feasible solutions under the same context c¢. This is
particularly relevant in constrained settings where multiple qualitatively different outputs satisfy
the same specification, such as multiple grasps for a target object, multiple classes of paths in
motion planning, or multiple designs that meet engineering requirements.

3.1 Posterior regularization as weak control

One can strengthen control in VAEs by modifying the ELBO with additional regularization
terms:

L(z) = By 22y log po(x | 2)] = KL(gg(2 | 2) [[p(2)) = ABqy 212 [¢ (2, 2)]; (18)

where 1 penalizes violations of desired properties.

This posterior regularization viewpoint makes explicit the connection between VAEs and
constrained optimization. Nevertheless, the enforcement remains soft and approximate, and the
resulting optimization problem is sensitive to weighting and approximation error.

4 Likelihood-free learning and the motivation for GANs

VAESs remain firmly within the likelihood-based paradigm: even though the marginal likelihood
pe(x) is intractable, training is still justified as approximate maximum likelihood through the
ELBO lower bound. This however inherits a central limitation: likelihood is not always aligned
with perceptual sample quality, especially in high-dimensional spaces [9]. In particular, a model
can achieve strong test log-likelihood while allocating substantial probability mass to visually
implausible or low-quality regions (for example, by mixing a small amount of data distribution
with a broad “noise” component), and the gap between likelihood metrics and sample quality
can become more pronounced as dimensionality increases.

At the same time, improving sample realism in VAEs is often achieved by modifying likelihood
assumptions or decoder capacity in ways that can adversely affect likelihood-based metrics. For
example, powerful decoders can reduce the need to encode information in z, leading to weak
latent representations and posterior collapse, while restrictive likelihood models can produce
overly smooth reconstructions. These tensions foreshadow a broader point: optimizing a tractable
surrogate for KL(pgata||pg) does not necessarily optimize the notion of similarity that matters for
downstream use, especially when “quality” is determined by complex, task-dependent criteria.

This motivates a shift in perspective. Instead of training by maximizing (approximate)
likelihood, one can compare pg to pgata using objectives that depend only on samples. If we can
draw samples & ~ pgata and = ~ pg, we may replace likelihood evaluation with a new metric
test: learn a statistic that distinguishes the two sample sets, and then train the generator so
that the samples become indistinguishable under this statistic.
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5 Generative Adversarial Networks

Generative Adversarial Networks instantiates this likelihood-free perspective by learning the
test statistic as a discriminator network and coupling it to the generator through an adversarial
game, yielding a training objective that directly targets sample-level indistinguishability rather
than explicit density estimation.

A generative adversarial network (GAN) [4] consists of two components trained simultaneously.
The generator Gy is a deterministic mapping that transforms a latent variable z ~ p(z), drawn
from a simple prior such as a standard Gaussian, into a sample © = Gy(z). This defines an
implicit model distribution py(x) as the pushforward of p(z) through Gy. In contrast to VAEs,
this distribution is not associated with a tractable density or an explicit probabilistic decoder.

The discriminator Dy (x) is a binary classifier trained to distinguish samples drawn from
the data distribution pgat, from samples produced by the generator. Formally, GAN training is
posed as the minimax problem

min X Epep,, 108 Do(w)] + Eonpis)l08(1 — Dy(Gol))] (19)

For fixed generator parameters 6, optimizing (19) with respect to ¢ corresponds to standard
binary classification with cross-entropy loss. For fixed discriminator parameters ¢, the generator
is trained to produce samples that the discriminator cannot reliably distinguish from real data.

The connection to two-sample testing becomes explicit by considering the optimal discrimina-
tor for a fixed generator. Under mild assumptions on model capacity, the optimal discriminator
satisfies (@)

* PdatalT

) = @) + pale) (20
Substituting D} back into (19) shows that, at the population level, GAN training minimizes
the Jensen—Shannon divergence between pgata and pg [4]. This derivation also clarifies why the
vanilla GAN objective can lead to unstable gradients when the supports of pgata and pg are
nearly disjoint, which motivates alternative divergences and integral probability metrics such as
Wasserstein GANs [1, 5] and the broader f-divergence viewpoint [7].

From a modeling perspective, this marks a sharp departure from VAEs. The generator is
not required to explain individual datapoints under a conditional likelihood, nor to produce a
posterior over latent variables. Instead, it is only required to produce samples whose aggregate
statistics, as detected by the discriminator, match those of the data [4]. This design choice
explains both the empirical strength and the practical fragility of GANs: the learned notion
of similarity can align closely with perceptual quality, but it is also implicit, task-dependent,
and difficult to constrain or interpret [9]. These properties will be central when we later discuss
why GANs are awkward vehicles for enforcing explicit feasibility constraints and why iterative,
optimization-based generative procedures offer a more natural interface for constraint injection.

GANSs as implicit control mechanisms From the perspective of constrained-aware genera-
tion, GANs can be viewed as learning an implicit feasibility region defined by the discriminator.
Samples outside this region are penalized, even if the penalty is not explicitly interpretable. This
implicit control explains the empirical success of GANs in producing visually realistic samples.
However, it also explains their limitations: feasibility is defined only relative to the discriminator,
not with respect to external constraints or symbolic rules.

Optimization pathologies and mode collapse. GAN training is notoriously unstable [4].
The minimax structure in (19) defines a two-player game rather than a single convex (or even
stationary) optimization problem, so standard descent arguments do not apply. In practice,
alternating updates of (6, ¢) often produce oscillatory dynamics in which the discriminator and
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generator continually “chase” each other, and there is typically no reliable, likelihood-based
stopping criterion or monotone objective to certify progress [4]. These instabilities are amplified
by function approximation and finite-sample training: when the discriminator becomes too
strong relative to the generator, gradients can become uninformative; when it is too weak, it fails
to provide a meaningful signal. This mismatch partly explains the empirical dependence of GANs
on architectural choices and regularization “tricks,” and motivates alternative formulations such
as Wasserstein GANs that replace the Jensen—Shannon divergence with a smoother integral
probability metric [1, 5].

A particularly important failure mode is mode collapse [4], where the generator concentrates
on producing samples from only a few modes of pgata (Sometimes degenerating to near-duplicates),
despite the data distribution being highly multimodal. One way to view this behavior is through
the geometry of the game: the generator can reduce its loss by moving probability mass toward
regions that the current discriminator scores highly, even if doing so sacrifices coverage elsewhere.
Since the discriminator is trained on finite minibatches and has limited capacity, it may not
penalize missing modes strongly enough to force recovery.

From a control standpoint, mode collapse represents a failure to enforce coverage or diversity
constraints. The generator can satisfy the discriminator locally, in the sense of producing
samples that appear realistic under the discriminator’s current decision boundary, while violating
global requirements such as representing all feasible solution families or maintaining diversity
across valid outputs. The key point is that this failure mode is structural: because the training
signal is mediated by an adaptive discriminator and does not directly penalize missing support,
mode collapse cannot be ruled out by the vanilla GAN objective alone, and addressing it
typically requires additional mechanisms (regularization, alternative divergences, or explicit
diversity-promoting constraints) [7, 1].

6 Where constraints enter: VAEs vs. GANSs vs. iterative meth-
ods

We now explicitly connect VAEs and GANs to the constrained target distribution introduced in
Lecture 1,

m(x | ¢) o< py(a | ¢) exp(=Ad(z,c)) {z € C(c)}, (21)
and ask where, if at all, each modeling paradigm provides a mechanism to approximate sampling
from .

This perspective makes precise why VAEs and GANs constitute early and weak forms of
control, and why neither is well suited for enforcing hard feasibility constraints.

6.1 VAEs as distribution-level regularization

In a VAE, control enters implicitly through the choice of prior p(z) and the KL regularization
term in the ELBO. The learned model approximates

po(z | ¢) = / po( | 7€) pl2) dz, (22)

with the constraint signal acting only indirectly through training data statistics or posterior
regularization terms.

When viewed through (21), VAEs primarily affect the base distribution pg(x | ¢). Any
constraint ¢(x, ¢) or feasibility set C(c) must be either: (i) absorbed into the training distribution,
(ii) approximated by a soft penalty inside the ELBO, or (iii) encoded indirectly through the
latent prior.

Crucially, once training is complete, sampling from a VAE is a one-shot procedure. There is
no mechanism to iteratively correct violations of C(c) at inference time.
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6.2 GANSs as implicit feasibility shaping

GANSs remove the likelihood entirely and replace it with an adversarially learned discriminator.
In effect, the discriminator induces an implicit constraint on generated samples by penalizing
deviations from the data distribution.

From the standpoint of (21), GANs do not expose either py(x | ¢) or an explicit energy
¢(x,c). Instead, feasibility is defined only relative to the discriminator’s decision boundary.

This has two important consequences. First, constraints that are not well represented in
the data cannot be enforced reliably. Second, there is no principled way to project or repair
infeasible samples, because feasibility is not explicitly represented.

Note that both VAEs and GANs generate samples in a single forward pass. As a result,
constraint satisfaction must be pre-compiled into the model parameters. This design funda-
mentally limits the types of constraints that can be enforced. In contrast, iterative generative
procedures expose intermediate states that can be modified, corrected, or projected. This
structural difference, rather than any specific loss function, is what enables strong constraint
enforcement.

7 Summary and preview

VAEs and GANs represent two influential but ultimately limited approaches to control in
generative modeling. VAEs offer explicit probabilistic structure and weak regularization through
priors and posteriors, while GANs provide implicit control through adversarial discrimination.

Neither framework provides a principled mechanism for enforcing hard constraints at inference
time. This observation motivates the central theme of the course: generation as an iterative
process in which optimization, projection, and correction can be interleaved with probabilistic
modeling.

In the next lectures, we will see how autoregressive decoding, diffusion, and flow-based
methods expose explicit iteration structures that make constraint-aware generation far more
tractable.

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In Proceedings of the 34th International Conference on Machine Learning (ICML),
2017.

[2] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859-877, 2017.

[3] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
In Proceedings of the International Conference on Learning Representations (ICLR), 2016.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems (NeurIPS), 2014.

[5] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.
Improved training of wasserstein gans. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[6] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.



CS 6501 | L3: VAEs and GANs F. Fioretto

[7] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization. In Advances in Neural Information
Processing Systems (NeurIPS), 2016.

[8] Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31st International
Conference on Machine Learning (ICML), 2014.

[9] Lucas Theis, Adron van den Oord, and Matthias Bethge. A note on the evaluation of
generative models. arXiv preprint arXiv:1511.01844, 2016.



	Latent-variable models
	Variational inference and the ELBO
	Conditional VAEs and structured priors
	Posterior regularization as weak control

	Likelihood-free learning and the motivation for GANs
	Generative Adversarial Networks
	Where constraints enter: VAEs vs. GANs vs. iterative methods
	VAEs as distribution-level regularization
	GANs as implicit feasibility shaping

	Summary and preview

