CS 6501: Constrained-Aware Generative Al

Lecture Notes 4

Autoregressive Transformers and Decoding
Generation as search under probabilistic and symbolic constraints

Prof. Ferdinando Fioretto
Department of Computer Science, University of Virginia

Thursday, January 22, 2026

Abstract

Autoregressive Transformers are the dominant foundation for modern language mod-
els because they couple a tractable likelihood with a powerful sequence architecture. In
constrained-aware generation, this matters for two reasons. First, the factorization yields a
canonical probabilistic objective, so “validity” can be expressed as a distributional constraint
that modifies a base model. Second, inference at generation time is an explicit search over
token sequences, so constraints can be injected directly into decoding by pruning invalid
continuations and reweighting feasible candidates. These notes review the autoregressive
factorization, the Transformer architecture, and standard decoding methods, then introduce
constrained decoding via grammars and finite-state constraints as the first concrete instance
of “generation as search subject to constraints”.

1 From constrained generation to constrained decoding

Lecture 1 introduced a recurring template for constrained-aware generation: starting from a base
model pg(x | ¢) that encodes plausibility, and combining it with soft penalties and hard feasibility
requirements to define a constrained target distribution m(x | ¢). Autoregressive language models
specialize this view to sequences y = (y1,...,yr) over a vocabulary V, conditioned on a prompt
or context x (which may itself be a token sequence). The central algorithmic fact for this lecture
is that, for autoregressive models, generation is an incremental search over prefires. This opens
a direct insertion point for constraints that act on partial sequences.

Constrained decoding as constrained inference

Given a prompt x, an autoregressive model defines pg(y | x). A hard constraint set
C(x) € VT induces the constrained distribution

m(y | x) o pe(y | x) H{y € C(x)}, (1)
and a soft constraint ¢(y,x) yields the energy-shaped target
m(y [%) o po(y [x) exp(=Ag(y,x)). (2)

Decoding is any procedure that approximates either sampling y ~ 7(- | x) or optimization
y € argmax, log 7(y | x).

The remainder of the lecture makes the above concrete by (i) recalling how pg(y | x) is
defined and trained for Transformers, (ii) formalizing standard decoding rules, and (iii) showing
how grammars and finite-state constraints can be enforced at the level of prefixes.

CS 6501 | L4: Autoregressive Transformers and Decoding F. Fioretto

2 Autoregressive factorization and maximum likelihood

Let y = (y1,...,yr) be a token sequence. The autoregressive assumption models the joint
distribution as

T

poly) = [[pow ly<t), where yep:=(y1,...,5-1). (3)
t=1

In conditional form, given a prompt x, the factorization becomes

T

po(y | x) = []re(u | y<r,x). (4)
t=1

Training by maximum likelihood on a dataset {(x®,y(®) »_, corresponds to minimizing the

negative log-likelihood, equivalently the token-level cross-entropy:

n T;)) '
min £(0) = —>_ > logpe(y” |y xD). (5)

=1 t=1

Here T; counts predicted tokens up to (and including) EOS but excludes padding; in a decoder-
only setting the prompt x is typically concatenated ahead of y so that y.; includes the prompt
tokens. This objective is optimized with teacher forcing: during training, the model conditions
on the true prefix yg At test time, the model conditions on its own generated prefix, which
yields exposure bias and compounds errors [Bengio et al., 2015, Ranzato et al., 2016]. From the
viewpoint of constrained-aware generation, this gap is important: if constraints are not enforced
during decoding, small local errors can push the model into regions where global validity is hard
to recover.

A standard evaluation summary of (5) is perplexity. For a test set, define the average
per-token negative log-likelihood ¢ as (5) divided by the total number of tokens. The perplexity
is then PPL := exp(¢). Perplexity is useful as a calibration measure of probabilistic fit, but it is
not a validity guarantee: a low-perplexity continuation may still violate grammar constraints,
lexical requirements, or policy constraints [Theis et al., 2016, Holtzman et al., 2020].

3 Transformers for autoregressive modeling

The autoregressive factorization (4) reduces conditional generation to learning a family of next-
token conditionals pg(y: | y<¢, %) that can be evaluated efficiently for all prefixes in parallel and
updated as the prefix grows. At this point the modeling question is: which parameterization
should we choose for these conditional distributions? In principle, many sequence models
can serve this role, including n-gram, recurrent networks, and state-space models. However,
in modern large-scale language modeling, the Transformer architecture has emerged as the
dominant parameterization of pg because it supports stable optimization at scale, exposes a
highly expressive attention-based representation of the context (y<¢,x), and can be implemented
with hardware-efficient batched matrix operations [Vaswani et al., 2017]. We therefore focus
on autoregressive Transformers as the canonical instantiation of (4), and then study decoding
as the induced search problem for high-probability sequences, including the first constrained
variants.

Token and position representations. Let an input sequence of length L be represented
by token ids (u1,...,ur) with u; € V, where V is a finite vocabulary and |V| denotes its size.
A Transformer first maps each token id to a dense vector in R? through an embedding table

CS 6501 | L4: Autoregressive Transformers and Decoding F. Fioretto

E € RVIXd 5o that e; := E[u;] € RY. Because attention is permutation-invariant in its basic
form, the model must also encode the position index ¢ € {1,..., L}. This is done by adding a
positional encoding p; € R, either learned (via a separate table P € REmaxxd) or fixed (e.g.,
sinusoidal). The initial hidden state at position i is then

W = e; + p; € R%

Stacking the vectors row-wise yields a matrix of hidden states H®) e REX4 whose i-th row is
pOT.

i
Self-attention with a causal mask. The central operation in a Transformer layer is to update

each position’s representation by taking a content-dependent weighted average of representations
at other positions. Fix a layer index ¢ € {1,..., Llayers} and suppose the previous layer provides
hidden states H¢1) e REX4 where the i-th row hy_l)—r summarizes the prefix information
available to position ¢ at depth £ — 1.

Self-attention is parameterized via three linear maps applied to every position: the queries,
keys, and values. Concretely, choose a head dimension dj, and define learned matrices Wg, Wi, Wy €
R4k The projected matrices are

Q:= H" YWy e RI*% K .= HEDW, e REX V= HDWwy, e REX %,

Write qiT for the i-th row of) and k:j—r for the j-th row of K. The scalar compatibility score
between position ¢ (as a query) and position j (as a key) is the dot product (g;, k;j) = q;—k:j.
Collecting all pairwise scores yields the matrix S := QKT € RY*E, where Sij = qZ-T k;. The
scaled dot-product attention operator is

T

K
Attn(Q, K, V) = AV with A= softmax(Q
Vi,

where 1/dj, is a normalization that stabilizes magnitudes of dot products as dj grows, and the
softmax is applied row-wise, i.e., for each i,

Sij
exp(\/i + Mij>
L AT ’
> exp(\‘ja + Mir>

+ M) e REXE, (6)

Aij =

Thus, the updated representation at position ¢ is a convex combination of value vectors: if UJT is
the j-th row of V, then the i-th row of Attn(Q, K, V') equals ZJL:1 Ajjv;.

For autoregressive language modeling, attention must be causal: position ¢ is allowed to
depend only on positions j < i. This is enforced via an additive mask matrix M € RE*L defined

by
0, J <t
M;; = {

—00, J >1,

so that after adding M and applying the softmax, all weights A;; with j > ¢ become 0. In
practice, —oo is implemented as a large negative constant, and padding positions can be masked
by setting the corresponding entries in M to —oo as well, ensuring that attention ignores padded
tokens.

Multi-head attention increases expressivity by running several attention operators in parallel
with different learned projections. With H heads, one typically chooses dp = d/H so the

h)

total width remains d. For head h € {1,..., H}, define WgL),WI((,W‘(/h) € R4 compute

Attn®™ e RE¥% via (6), and then concatenate head outputs along the feature dimension:

MHA(H D) = [Attn® || - || Attn D] W,

CS 6501 | L4: Autoregressive Transformers and Decoding F. Fioretto

where || denotes concatenation, the bracketed term lies in RE*4, and Wy € R4 is an output
projection. Intuitively, different heads can specialize to different relations, such as local syntactic
dependencies, long-range coreference, or delimiter matching that is relevant for constrained
generation.

A standard decoder block then combines attention with a position-wise feedforward network
(FFN) and stabilization layers. A common choice is the two-layer FFN

FFN(z) := Waoo(Wiz + b1) + ba,

applied independently to each position, where W; € R¥*% 1, € R% X4 dg is an expansion
dimension, and o is a nonlinearity (e.g., GELU). Residual connections and normalization
(LayerNorm or RMSNorm) are applied around both the attention and FFN sublayers; in the
common pre-norm form,

H = HY + MHA(Norm(HY)), HY = H 4+ FFN(Norm(H)).

These design choices are not cosmetic: they enable training deep stacks and are central to why
Transformers scale effectively [Vaswani et al., 2017].

From hidden states to next-token probabilities. In a decoder-only language model, the
final layer outputs a sequence of hidden states HFavers) ¢ REX4 At a time step ¢ (corresponding
to position t in the concatenated prompt-plus-generated sequence), the model maps the hidden
vector h; := h,ELl‘"‘yerS) € R? to logits over the vocabulary via an output matrix Wy € R¥MVl and
(optionally) a bias by € RIVI:

st == h) Wy +by € RV,

The component s, is the unnormalized score assigned to token v € V at step ¢. The conditional
distribution is then obtained by the softmax,

exp(se,p) ' 7)
vey XD(St,0r)

po(ye =v | y<t,x) = 5

Often Wy is tied to the embedding table E (weight tying), which reduces parameters and
can improve generalization. Under scaling and sufficient data, this parameterization supports
few-shot prompting and in-context learning behaviors [Brown et al., 2020, Wei et al., 2022].

Encoder-only and encoder-decoder variants. While this course emphasizes autoregressive
decoding, it is useful to contrast other Transformer families. BERT-style models are encoder-only:
they process the entire input bidirectionally and are trained with masked language modeling, a
denoising objective that predicts masked tokens from both left and right context [Devlin et al.,
2019]. Sequence-to-sequence models adopt an encoder-decoder structure: an encoder maps
an input x to contextual states, and a decoder generates y autoregressively while attending
to the encoder states via cross-attention. Historically, many constrained generation problems
in translation and summarization were studied in this setting because the separation between
source conditioning and target decoding makes it natural to incorporate lexical and structural
constraints during decoding.

4 Pretraining, scaling, and compute-data tradeoffs

Modern language models are typically trained in two stages: unsupervised pretraining on
large corpora, then task adaptation (supervised fine-tuning, instruction tuning, or preference
optimization). Several empirical regularities matter for constrained-aware generation.

CS 6501 | L4: Autoregressive Transformers and Decoding F. Fioretto

Kaplan et al. proposed scaling laws that relate loss to model size, dataset size, and compute
under regimes where optimization is stable [Kaplan et al., 2020]. Hoffmann et al. argued that,
for a fixed compute budget, many models were under-trained on data, and derived compute-
optimal tradeoffs that informed later LLM training recipes [Hoffmann et al., 2022]. These scaling
perspectives are directly relevant to constraint-aware generation because constraint satisfaction
can be viewed as requiring effective capacity on rare events: hard constraints often correspond
to low-probability regions under the base model, so feasibility under constraints may demand
either additional model capacity, additional data that covers constrained regions, or explicit
inference-time constraint mechanisms.

Open technical reports such as GPT-2 [Radford et al., 2019] and LLaMA [Touvron et al.,
2023] provide useful engineering context, including architectural choices, tokenization, and
training setups. However, for this course the key point is conceptual: even very large base
models remain stochastic predictors, so correctness and validity often require explicit constraint
enforcement during decoding, reranking, or post-processing.

5 Decoding: sampling and search in autoregressive models

Given a prompt x and a model pg(y | x), generation is an iterative procedure that chooses
tokens y; sequentially. Formally, at each step ¢ we have a distribution over next tokens as in (7),
and we select a token by either (i) sampling, or (ii) approximate maximization of some global
objective.

5.1 An inference view of decoding

A common objective is the maximum a posteriori (MAP) continuation

y € arg max [logpg(y | x) +a-len(y)|, (8)
yevT

where the length term (or an explicit EOS penalty) handles variable-length decoding. Alternatively,
one may aim to sample from pg(- | X) to preserve diversity. For open-ended generation, naive
ancestral sampling can lead to repetitive and degenerate text [Holtzman et al., 2020], motivating
a family of heuristic decoding rules that shape the next-token distribution.

5.2 Greedy decoding and temperature sampling

Greedy decoding chooses

Yy € argmax log pg (v | y<¢, X). 9)
veEY

This is fast but often yields generic continuations.
Temperature sampling rescales logits as s¢,, /7 for 7 > 0, defining

exp(st/T)
vey €XP(51.0/T)

Py (v | yei,x) = = (10)

As 7 | 0, the distribution concentrates near the greedy choice; as 7 1 oo, it approaches uniform
over the vocabulary. Temperature is therefore a knob that trades off diversity and local likelihood.
5.3 Top-k and nucleus (top-p) sampling

Top-k sampling restricts attention to the k£ most likely tokens at step ¢:

p(v) L{v € V"
2 ey PV

(11)

Vt(k) := top-k tokens under pg(- | y<¢,x), p(v)

CS 6501 | L4: Autoregressive Transformers and Decoding F. Fioretto

Algorithm 1 Nucleus (top-p) sampling

1: Input: prompt x, model pg, threshold p € (0,1), temperature 7 > 0
2: Initialize prefix y.1 < 0)

3: for t =1,2,... until EOS or length limit do

4: Compute logits s; from the Transformer given (x,y¢)

5. Form probabilities g(v) oc exp(s,/7) over v € V

6

Sort tokens by ¢(v) and let Vt(p) be the smallest set with @) q(v) >p
veVy

Renormalize §(v) x g(v)1{v € Vt(p)} and sample y; ~ q(-)
. Append y; to the prefix y<iy1 < (y<t,yt)
9: end for
10: Return: generated sequence y

Nucleus sampling (top-p) chooses the smallest set Vt(p) whose cumulative probability mass is at

least p € (0, 1), then renormalizes similarly [Holtzman et al., 2020]. Unlike top-k, top-p adapts
the candidate set size to the entropy of the distribution: in sharp distributions it behaves like
greedy, in flat distributions it keeps more candidates.

the candidate set size to the entropy of the distribution: in sharp distributions it behaves
like greedy, in flat distributions it keeps more candidates.

These heuristics can be interpreted as approximate constrained sampling with a stepwise
feasibility set. However, because the truncation is local, it does not enforce global properties
such as satisfying a grammar or including specific required substrings. This motivates explicit
constrained decoding methods.

5.4 Beam search as approximate MAP

Beam search approximates (8) by maintaining a set of B partial hypotheses at each step and
extending each hypothesis by likely next tokens. Let b index hypotheses and let ¢(b) denote a
score, often the accumulated log-probability (possibly length-normalized). Beam search proceeds
by expanding each hypothesis, then keeping the B best scoring continuations.

Beam search is a generic approximate search method, not an exact inference procedure. In
open-ended generation, beam search can amplify model biases toward high-probability generic
text. In constrained settings, beam search is attractive because constraints can be injected by
restricting allowable expansions, so the beam never enters infeasible regions.

5.5 Reranking and decoding as optimization

A practical pattern is two-stage generation: first produce a candidate set {y(™}M_, using
sampling or beam search, then choose the best candidate under an auxiliary scoring function:

¥y € arg max [logpg(y(m) | x) —)\qb(y(m),x)) (12)
me[M]

Here ¢ may be a constraint violation score, a verifier output, a toxicity detector, or an external
simulator. This is a first instance of “verifier-in-the-loop” constrained generation.

Contrastive decoding [Li et al., 2022] can be interpreted in this family: it modifies the token
selection rule by preferring tokens that are simultaneously likely under an expert model and
unlikely under a weaker or noisier model, biasing generation away from generic high-frequency
patterns. The optimization perspective is useful for this course because it connects decoding
rules to constraint energies, which later reappear in guidance, projection, proximal updates, and
differentiable layers.

CS 6501 | L4: Autoregressive Transformers and Decoding F. Fioretto

6 Constrained decoding via grammars and finite-state con-
straints

Constrained decoding enforces a global constraint set C(x) during generation, where C(x) encodes
what sequences are deemed feasible given the prompt x. The operational point is that decoding is
incremental: at step ¢ we have only a prefix y1.;, and we must decide which next tokens preserve
the possibility of eventually reaching some y € C(x). The key technical device is therefore to
represent C(x) in a way that supports fast, incremental feasibility checks on prefixes, typically
via a constraint state that is updated alongside the language model prefix.

6.1 Prefix-closed feasibility and automata

A hard constraint set C C V7T is useful for incremental decoding when it induces a set of feasible
prefixes

Pref(C) := {y1.+ : Jyt+1.7 such that (y1.¢,yer1.7) € C}. (13)

If a prefix yi.; ¢ Pref(C), then no continuation can satisfy the constraint, so it is safe to prune.
This observation turns constrained decoding into a standard search problem: maintain a set of
partial hypotheses (prefixes), prune those that fall outside Pref(C), and score expansions using
the model probabilities.

Finite-state constraints provide an especially clean representation because Pref(C) can be
tracked by a finite automaton state. Let A = (S,V, 0, so, F) be a finite-state automaton (FSA),
where S is a finite state set, sg is the start state, F is the accepting set, and § : S x V — 25 is
the transition relation. A sequence y is feasible if there exists a path from sg to some s € F
labeled by y. Given a current automaton state s; after reading a prefix, the set of allowed next
tokens is

A(sy) :={v eV :d(s,v) # D} (14)

A constrained next-token distribution is then obtained by masking and renormalizing:

po(v | y<i,x) 1{v € A(s1)}
Zv/eA(st)Pe(U/ | y<t, %)

. (15)

7T(U | Y<t, X, St) =

This is the simplest constrained decoding rule: it guarantees that generated prefixes remain
feasible, because every sampled/selected token is certified by the automaton.

Example 1 (Pure FSA feasibility: a strict output template). Consider a generator that must
output a citation key in the rigid template

[A-D]{0-90-9},

i.e., one capital letter in {4, B, C,D}, then a dash, then an opening brace, then exactly two digits,
then a closing brace. This is a reqular language and can be represented by an FSA whose states
track the current position in the template. For instance, let sy be the start state, s1 the state
after consuming the initial bracket [, so after consuming the letter, s3 after consuming -, s4
after consuming {, ss after the first digit, s¢ after the second digit, and s; the accepting state
after }. Then the allowed set A(s;) is completely explicit: A(s1) = {4, B, C, D}, A(s2) = {-},
A(ss) ={0,..., 9}, etc. Decoding with (15) forces the model to emit only tokens consistent with
the template; the model still controls which letter and which digits appear, but it cannot violate
the structure. This is an archetypal instance of “generation as search subject to constraints”:
the automaton provides a prefix-feasibility oracle, and the language model provides preferences
among feasible continuations.

CS 6501 | L4: Autoregressive Transformers and Decoding F. Fioretto

Algorithm 2 FSA-constrained decoding (generic skeleton)

1: Input: prompt x, model pg, automaton A = (S,V, 4, sg, F), decoding rule Select
2: Initialize prefix y; < 0 and automaton state s < sg

3: for t =1,2,... until EOS or length limit do

4: Compute next-token distribution pg(- | y<¢, X)

5. Compute allowed set A(sy) = {v: d(s¢,v) # 0}

6: Mask and renormalize to obtain 7(- | y<¢, X, s¢) as in (15)

7: Choose y; < Select (71(| y<t, %, st)) (sampling, greedy, or beam expansion)

8: Update automaton state s;11 € 0(s¢,y;:) and append token to the prefix

9: end for

10: Return: y (accept if final state in F)

6.2 Grammar constraints

Grammars generalize FSAs. For regular constraints, an FSA is sufficient. For context-free
constraints (for example matching brackets, structured queries, or typed expressions), a finite-
state representation is in general impossible, but incremental feasibility can still be tracked by a
parser state. The practical message is the same: at decoding step ¢, compute the set of tokens
that keep the partial parse valid, mask logits accordingly, and renormalize.

To make the “state” explicit, let ParseState(y;.;) denote the parser configuration after
consuming the prefix, e.g., a stack of nonterminals for a predictive parser, plus any partially
matched terminals. Given a grammar G, define the set of grammar-admissible next terminals at
that configuration,

Ac(y1:t) :=={v € V : v can be the next token in some valid derivation extending yi.;}.

Then constrained decoding proceeds exactly as in (15), replacing A(s;) with Ag(y1.¢). The
difference is implementation: computing A¢ typically requires parser actions, and the “mask” is
grammar-induced rather than automaton-induced.

In token-based LLMs, grammar constraints require care because tokenization breaks strings
into subwords. A grammar written at the character level must be aligned with the token
vocabulary, often by compiling the grammar into a token-level automaton or by running a
character-level parser while checking whether candidate tokens can be extended to a valid
character string. This compilation step is itself a constraint engineering decision, and it is one
reason why constrained generation often prefers domain-specific tokenizations (for example code
tokens or JSON tokens) when strict syntactic validity is required.

Example 2 (Context-free feasibility: balanced parentheses and well-formed expressions). Con-
sider generating arithmetic expressions over digits and operators with the additional requirement
that parentheses are balanced and properly nested, e.g.,

(3+5)*(7-2) is valid, while (3+5))*7 is invalid.

Balanced parentheses are a canonical context-free constraint: validity cannot be captured by any
finite-state automaton because it requires unbounded counting and nesting. A simple grammar is

E—-E+T|E-T|T, T—Tx*F|T/F|F, F — (E) | num.

An incremental parser maintains a state that includes, at minimum, the stack of expected closing
parentheses and the current nonterminal expansion context. After producing the prefiz (3+5) *,
the parser state implies that the next token cannot be) (there is no open parenthesis to close
at that point) and cannot be an operator (we just emitted *), but it can be (or a digit starting
a num. Thus the grammar-induced admissible set Ag(y1.t) rules out syntactically impossible

CS 6501 | L4: Autoregressive Transformers and Decoding F. Fioretto

continuations before the language model scores them. In constrained decoding, the language
model decides which feasible continuation is most plausible (e.g., (versus 7), while the grammar
enforces global well-formedness by construction.

6.3 Lexically constrained decoding

Lexical constraints require that a set of words or phrases appear in the generated sequence. This
is common in translation (must include named entities), summarization (must include key facts),
and domain generation (must include required fields). Lexical constraints can be represented by
an automaton that tracks which constraints have been satisfied so far. If there are C' required
items, a conceptually simple representation is a state variable ¢ € {0, 1}0 that encodes which
items have appeared.

The central difficulty is not feasibility per se but search complexity: once constraints are
introduced, naive beam search can easily “use up” the beam on fluent but constraint-violating
hypotheses, and may fail to ever place any probability mass on prefixes that complete all required
items. The role of lexically constrained methods is therefore to force the search to reserve
capacity for constraint-progressing hypotheses.

Grid Beam Search (GBS). Grid Beam Search (GBS) [Hokamp and Liu, 2017] constructs a
grid indexed by time ¢t and the number k of constraints satisfied so far. It maintains a separate
beam By j for each cell, where By j, contains the best-scoring prefixes of length ¢ that have satisfied
exactly k constraints. Expansions are only allowed if they correctly update the constraint-count
index. Intuitively, the grid prevents the search from collapsing onto high-probability prefixes
that make no progress on constraints, because there is always an explicitly maintained beam for
larger k.

Dynamic Beam Allocation (DBA). Dynamic Beam Allocation (DBA) [Post and Vilar,
2018] improves efficiency by using a single global beam budget B and allocating it adaptively
across constraint states, rather than populating all grid cells with the same fixed width. In
practice, DBA maintains hypotheses grouped by their constraint satisfaction state and reallocates
beam slots toward groups that still need capacity to complete remaining constraints. The key
effect is that DBA achieves most of the robustness of GBS at significantly lower computational
cost, especially when C' is large or when the constraint automaton has many states.

Example 3 (Lexically constrained decoding in translation: forcing named entities). Consider
translating the source sentence x = “‘I met Dr. Chen in Charlottesville.’’ into Italian,
with the hard lezical constraint that the output must contain the name ‘‘Chen’’ (to avoid
mistranslating or dropping the named entity). Let the required phrase set be {Chen}, so C' =1
and the constraint state is ¢ € {0,1}, where ¢ = 1 indicates that the phrase has appeared.

In unconstrained beam search, many high-probability prefixes may commit early to a paraphrase
that omits the name, and once the search has pruned all hypotheses that still allow inserting
Chen naturally, the constraint becomes impossible to satisfy. GBS prevents this by maintaining
two beams at each time: By for prefizes that have not yet produced Chen and By for prefizes
that have. Even if By o contains the most fluent prefizes, the algorithm keeps a dedicated beam
for ¢ =1 so that once a hypothesis emits Chen it is not immediately drowned out. DBA achieves
a similar effect while letting the width devoted to ¢ = 0 versus ¢ = 1 shift over time, for example
allocating more width to ¢ = 0 early (exploration) and reserving enough width to ¢ =1 as the
length budget shrinks (completion pressure).

This example highlights a recurring theme in constrained-aware generation: enforcing a
global requirement is often less about masking individual tokens and more about managing search
resources so that constraint-satisfying hypotheses remain alive until they can be completed.

CS 6501 | L4: Autoregressive Transformers and Decoding F. Fioretto

Example 4 (Lexical constraints as the first “policy” constraint). Consider an email assistant
that must generate a meeting confirmation containing two mandatory phrases: (i) ‘‘Rice Hall
34077 and (ii) < ‘Thursday at 9:30AM’°. Let C(x) be the set of continuations that contain both
phrases at least once. A constrained decoder can maintain a state variable ¢ € {0,1}? and update
it when a phrase is completed. Beam search can then be run over pairs (prefiz,c), pruning any
expansion that makes it impossible to satisfy the remaining phrases within the length budget.
This is a minimal instance of treating generation as search under a symbolic policy constraint.

6.4 Complexity and failure modes

Constrained decoding trades probability mass for validity. If C(x) is too strict relative to the
base model, the feasible set may have extremely small probability, leading to brittle search
and low-quality outputs. Algorithmically, constraints increase decoding complexity because the
search state must track both the language model prefix and the constraint state (for example
an automaton state or a constraint satisfaction vector). For beam-based methods, complexity
typically scales as O(BT) in the unconstrained case, and as O(BT - |S|) or O(BT -2%) depending
on the constraint representation.

From the course perspective, this motivates three later themes. First, we want constraints to
be represented in a way that admits efficient incremental feasibility checks. Second, we want
the base model to assign nontrivial mass to the feasible set, which connects to training-time
constraint injection. Third, we want principled ways to balance soft and hard constraints, which
connects to optimization tools such as penalties, Lagrangians, and splitting methods.

7 Summary and outlook

Autoregressive Transformers define a tractable likelihood via the factorization pg(y | x) =
[L;po(y: | y<¢,x) and implement it with a causal self-attention architecture. Decoding is then
an inference procedure, either sampling or approximate optimization, and the decoding step is
where constraints can be enforced directly as feasibility masks or as reranking energies.

The constrained decoding mechanisms in this lecture are intentionally simple: grammars,
finite-state constraints, and lexical constraints. Their value is that they provide a clean,
operational example of “generation as search subject to constraints” before we introduce the
optimization toolbox. In later lectures, we will revisit the same pattern in continuous domains,
where constraint enforcement often proceeds through projection, proximal operators, or guidance
forces.

References

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In NeurIPS, 2017.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. In NeurIPS, 2020.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text
degeneration. In ICLR, 2020.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction
with recurrent neural networks. In NeurIPS, 2015.

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level training with recurrent neural
networks. In ICLR, 2016.

10

CS 6501 | L4: Autoregressive Transformers and Decoding F. Fioretto

L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models.
arXiw:1511.01844, 2016.

C. Hokamp and Q. Liu. Lexically constrained decoding for sequence generation using grid beam
search. In ACL, 2017.

M. Post and D. Vilar. Fast lexically constrained decoding with dynamic beam allocation. In
NAACL, 2018.

Y. Li, Y. Liang, K. Zhang, and M. Ranzato. Contrastive decoding: Open-ended text generation
as optimization. In ACL, 2022.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are
unsupervised multitask learners. Technical report, OpenAl, 2019.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL, 2019.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,
J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv:2001.08361, 2020.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas,
L. Henderson, A. Menick, et al. Training compute-optimal large language models.
arXiw:2203.15556, 2022.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, et al. LLaMA: Open and efficient foundation language models. arXiv:2302.13971,
2023.

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma,
D. Zhou, E. H. Chi, T. Hashimoto, P. Liang, and J. Dean. Emergent abilities of large language
models. arXiw:2206.07682, 2022.

11

	From constrained generation to constrained decoding
	Autoregressive factorization and maximum likelihood
	Transformers for autoregressive modeling
	Pretraining, scaling, and compute-data tradeoffs
	Decoding: sampling and search in autoregressive models
	An inference view of decoding
	Greedy decoding and temperature sampling
	Top-k and nucleus (top-p) sampling
	Beam search as approximate MAP
	Reranking and decoding as optimization

	Constrained decoding via grammars and finite-state constraints
	Prefix-closed feasibility and automata
	Grammar constraints
	Lexically constrained decoding
	Complexity and failure modes

	Summary and outlook

