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Abstract

This lecture instantiates the “architecture-level” mode of constraint injection: instead of
adding penalties, projecting samples, or searching over outputs, we restrict the hypothesis
class so that the model automatically respects a desired symmetry. The technical language
for this restriction is equivariance: a map f is equivariant to a group action if transforming
the input and then applying f is equivalent to applying f and then transforming the
output. Equivariance captures a large class of control-relevant inductive biases, including
translation equivariance in CNNs, permutation equivariance in graph neural networks, and
roto-translation equivariance in models over 3D point clouds, molecules, and rigid-body
trajectories. We formalize group actions and equivariant maps, connect equivariance to weight
tying and sample efficiency, and then study three concrete realizations: (i) permutation-
equivariant message passing on graphs; (ii) E(n)-equivariant graph neural networks (EGNNs)
that update both node features and coordinates while respecting Euclidean symmetries; and
(iii) higher-order SE(3)-equivariant architectures based on tensor representations, including
Tensor Field Networks and SE(3)-Transformers. Throughout, we emphasize why these
inductive biases are best interpreted as hard architectural constraints that complement the
probabilistic and optimization-based mechanisms developed elsewhere in the course.

1 Why geometry is “architecture-level control”

The course has so far emphasized constrained generation as inference over a target distribution
formed by combining a base model with soft potentials and hard feasibility sets (Lecture 1), and
showed how constraints can enter at inference time through decoding and search (Lecture 4).
This lecture focuses on a different injection point: the architecture itself.

Goal. The goal is to encode symmetry constraints directly into a neural network so that the
network’s outputs transform predictably under known transformations of the input. In scientific
and engineering problems, these symmetries are often consequences of first principles. For
example, molecular energies do not change when we translate or rotate the entire molecule;
a rigid-body state transforms under the SE(3) group; and many multi-agent and mesh-based
representations are inherently permutation symmetric.

Challenge. If a model ignores symmetry and is trained on finite data, it typically learns a
function class that breaks the symmetry: it can assign different outputs to physically identical
inputs related by a transformation. Data augmentation can reduce this mismatch, but it does
not guarantee exact symmetry and can be inefficient, especially when the symmetry group is
continuous.
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Solution pattern. Equivariance implements symmetry as a hard constraint on the function
class. Instead of learning an arbitrary function f : X → Y, we restrict to those f satisfying an
equivariance condition relative to a group G. This is a form of architectural control: the model
is “steered” not by modifying the objective, but by modifying the space of functions that can be
represented. The unifying survey of this viewpoint is the geometric deep learning program (?).

2 Groups, actions, invariance, and equivariance

2.1 Group actions as transformations of data

Definition 1 (Group and group action). A group (G, ·) is a set G with an associative binary
operation, an identity element e ∈ G, and inverses g−1 for each g ∈ G. A (left) action of G on a
set X is a map G × X → X , written (g,x) 7→ g · x, satisfying e · x = x and g · (h · x) = (gh) · x
for all g, h ∈ G and x ∈ X .

In learning problems, X is the space of inputs (signals on a grid, graphs, point clouds,
trajectories) and g · x denotes a known transformation. Examples include translations acting on
images, permutations acting on node orderings, and rigid motions acting on 3D coordinates.

Euclidean groups. In Rn, a key symmetry group is the Euclidean group E(n) = Rn ⋊O(n)
consisting of translations and orthogonal transformations. For orientation-preserving rigid
motions in 3D, the group is SE(3) = R3 ⋊ SO(3).

2.2 Equivariance as a hard constraint on maps

Let G act on X and Y. A map f : X → Y can either ignore the action or be structured to
respect it.

Equivariance and invariance

Definition 2 (Equivariance and invariance). Let G act on X and Y. A function f : X → Y
is G-equivariant if, for all g ∈ G and x ∈ X ,

f(g · x) = g · f(x). (1)

If G acts trivially on Y (that is, g · y = y for all y ∈ Y), then (??) reduces to G-invariance:

f(g · x) = f(x). (2)

Interpretation for control. Equivariance is often the desired property for predictors of
geometric quantities (forces, vector fields, poses), because the output should transform with the
input. Invariance is often desired for scalar objectives (energy, stability, reward), because those
should not change under a global frame transformation.

Lemma 1 (Closure under composition). If f : X → Y is G-equivariant and h : Y → Z is
G-equivariant, then h ◦ f is G-equivariant. If f is G-equivariant and h is G-invariant, then h ◦ f
is G-invariant.

This lemma is one reason equivariance is an architectural primitive: if each layer is equivariant,
then the full network is equivariant.
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2.3 Equivariance versus data augmentation

A recurring design choice is whether to impose symmetry by augmentation or by architecture.
Augmentation enforces the symmetry in expectation over the training set by exposing transformed
samples to the learner. In contrast, equivariant architectures enforce the symmetry for all inputs,
including out-of-distribution samples. Group equivariance in convolutional networks is a canonical
example (?), and in modern geometric settings the benefits are pronounced because the relevant
group is often continuous and high dimensional (?).

3 From CNNs to group convolutions: a fast geometric recap

The success of standard CNNs can be reframed as a symmetry statement: convolution is
translation-equivariant, meaning that shifting the input shifts the feature map. In the geometric
deep learning view, CNNs are instances of group equivariant architectures on the translation
group (?).

Group convolution. To extend translation equivariance to a richer group G (for example,
translations plus discrete rotations), one replaces standard convolution with group convolution.
The core idea is to define features on G and convolve by integrating (or summing) over the
group. In discrete settings this yields practical architectures with stronger weight sharing than
standard CNNs, improving sample efficiency and robustness (?). More generally, steerable
CNNs characterize equivariant kernels via group representation theory and yield systematic
constructions for continuous groups such as E(2) (?).

For this course, the main conceptual point is that group convolution is not “regularization”:
it hard-codes a constraint (??) into the layer definition.

4 Graphs: permutation symmetry as the first geometric con-
straint

Many control and generation problems are expressed over graphs: molecules, meshes, social
or multi-agent interaction graphs, and factor graphs. The basic symmetry is node relabeling.
Let Sn be the permutation group on n elements, acting on node-indexed representations by
permuting indices.

Permutation equivariance. A graph layer is permutation equivariant if permuting node
order permutes outputs in the same way. Message passing networks achieve this by aggregating
neighbor messages through a commutative operator (typically summation). This is closely
related to the characterization of permutation-invariant set functions (?).

Definition 3 (Message passing layer (one-step form)). Let G = (V,E) with nodes V = {1, . . . , n},
node features hi ∈ Rd, and edge features aij for (i, j) ∈ E. A generic message passing update
has the form

mij = ϕe(hi, hj , aij), (3)

m̄i =
∑

j∈N (i)

mij , (4)

h+i = ϕh(hi, m̄i), (5)

where ϕe and ϕh are shared functions (typically MLPs) and the sum is taken over neighbors.
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Proposition 1 (Permutation equivariance of message passing). Assume the aggregation operator
is commutative and associative (for example, sum or mean) and the same functions ϕe, ϕh are
shared across nodes and edges. Then the message passing update is equivariant to permutations
of node indices.

This proposition is an explicit architectural constraint: the model cannot “cheat” by depend-
ing on an arbitrary indexing of nodes.

5 E(n)-equivariant GNNs: learning over features and coordi-
nates

Graphs with geometry attach coordinates xi ∈ Rn to nodes: atoms in a molecule, residues in a
protein backbone, particles in an N -body system, or agents in a spatial environment. In these
settings we want both permutation equivariance and equivariance to the Euclidean group E(n)
acting on coordinates.

5.1 The EGNN layer

The E(n)-Equivariant Graph Neural Network (EGNN) of ? is a widely used construction because
it achieves Euclidean equivariance without explicitly manipulating higher-order tensor features.

E(n)-Equivariant Graph Neural Network (EGNN) update

For node features hℓi ∈ Rd and coordinates xℓi ∈ Rn, define

mℓ
ij = ϕe

(
hℓi , h

ℓ
j , aij , ∥xℓi − xℓj∥22

)
, (6)

hℓ+1
i = ϕh

hℓi ,
∑

j∈N (i)

mℓ
ij

 , (7)

xℓ+1
i = xℓi +

∑
j∈N (i)

(xℓi − xℓj)ϕx(m
ℓ
ij), (8)

where ϕe, ϕh, ϕx are shared learnable functions (typically MLPs), and ϕx(m
ℓ
ij) is scalar-

valued.

The design choices in (??)–(??) are tightly coupled to equivariance. The message depends
on coordinates only through squared distances, which are invariant to E(n). The coordinate
update is a sum of relative displacement vectors (xi − xj) scaled by invariant scalars, yielding
an equivariant update.

5.2 Equivariance guarantee

We state the key property informally; proofs appear in ?.

Theorem 1 (E(n)-equivariance of EGNN layers). Let g ∈ E(n) act on coordinates by g·x = Rx+t
with R ∈ O(n) and t ∈ Rn, and act trivially on scalar node features. Then the EGNN update (??)–
(??) is equivariant to E(n): if we transform the input coordinates by g, the output coordinates
transform by the same g, and the updated node features are invariant.

Why this matters. In molecular and robotic settings, the global coordinate frame is arbitrary.
Equivariant architectures eliminate spurious dependence on that frame and thereby reduce
the burden on data and training. In practice, EGNN-style models are used both as predictive
components (property prediction, dynamics) and as score networks inside diffusion models for
3D generation (?).
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6 Higher-order equivariance: Tensor Field Networks and SE(3)
attention

EGNN achieves equivariance with scalar features and coordinate updates, but many scientific
tasks benefit from higher-order geometric features (vectors and tensors) that carry directional
information. This motivates architectures grounded in representation theory for SO(3) and
SE(3).

6.1 Tensor Field Networks (TFNs)

Tensor Field Networks (TFNs) represent node features as collections of geometric tensors that
transform under irreducible representations (irreps) of SO(3), and define convolutional filters
using spherical harmonics (?). At a high level, TFNs enforce equivariance by ensuring that every
linear map between features respects the representation structure, and by combining features
using tensor products followed by Clebsch–Gordan decompositions.

Practical intuition. One can view TFNs as learning with “typed” channels: scalars (type 0),
vectors (type 1), and higher-order tensors. The network is only allowed to combine these channels
in ways permitted by SO(3) representation theory, which acts as a set of hard constraints on the
layer parameterization.

6.2 SE(3)-Transformers

The SE(3)-Transformer extends self-attention to 3D point clouds and graphs while preserving
SE(3) equivariance (?). Conceptually, it replaces dot-product attention with an attention
mechanism built from equivariant kernels, again defined in the TFN framework. This yields a
model that can flexibly aggregate information across many neighbors (a strength of attention)
without sacrificing predictable behavior under roto-translations.

Computational tradeoffs. Equivariant attention is more expensive than EGNN-style updates
because it must carry and transform higher-order features. This has motivated a spectrum of
architectures trading expressiveness for efficiency, from EGNN to TFN and SE(3)-Transformers,
and newer interatomic potential models such as NequIP that show substantial data efficiency
gains from E(3)-equivariance (?).

7 Where these architectures appear in constrained generation
and control

Equivariance has become a default design choice in several constrained-aware generative pipelines,
because it aligns the learned prior with physical symmetries of the task.

Protein structure and design. Modern protein structure prediction includes geometry-
aware attention and equivariant coordinate updates. AlphaFold introduces “invariant point
attention” and an equivariant structure module, reflecting the centrality of SE(3) structure in
proteins (?). In generative design, diffusion models over 3D backbones or frames typically rely on
SE(3)-equivariant score networks, because denoising steps must respect global roto-translation
symmetry (??).
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Molecular docking and 3D generative chemistry. Docking is naturally defined on relative
rigid-body transformations between a ligand and a receptor. Diffusion models such as DiffDock
explicitly predict score components in translation and rotation spaces in a way that is consistent
with SE(3) geometry, which can be read as an equivariance requirement on the learned vector
fields (?).

Control on manifolds and Lie groups. Many control states live on manifolds: orientations
on SO(3), poses on SE(3), and configurations with constraints. Encoding the correct transfor-
mation laws directly into policy and dynamics networks is often more robust than attempting to
learn these properties from data. This viewpoint will recur when we study optimization-based
control mechanisms (Lecture 6 and beyond), because respecting geometry can be interpreted as
working on the right constraint set or quotient space rather than on an unconstrained Euclidean
relaxation.

8 Summary: equivariance as a reusable architectural primitive

Equivariance is a hard architectural constraint: it restricts the model class so that symmetries
hold for every input, not just on average. This lecture framed CNNs, GNNs, EGNNs, and
SE(3)-equivariant attention as a single design pattern: choose a group G that captures domain
symmetries, define its actions on inputs and outputs, and build layers satisfying f(g ·x) = g ·f(x).

In the broader “constrained-aware” view of the course, equivariance complements optimization
and inference-time mechanisms. It moves a subset of constraints from the verifier or solver into
the parametric form of the generator itself. Next, we return to optimization primitives that
enforce general constraints beyond symmetry, including projections, penalties, and proximal
operators.
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