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Abstract

Constrained-aware generation repeatedly reduces to a small number of optimization
primitives that can be inserted into training-time objectives, architectural design, or inference-
time procedures. This lecture reviews four primitives that will recur throughout the course.
First, we formalize constraint sets and Euclidean projections, emphasizing why projection
is a least-squares problem and how its optimality conditions encode feasibility through a
normal cone. Second, we review penalty methods as a mechanism to convert constrained
problems into unconstrained ones, clarifying when and why large penalty weights lead to
ill-conditioning and how exact penalties avoid this pathology. Third, we introduce proximal
operators, which generalize projection to nonsmooth penalties and yield a clean algorithmic
template for “one step of model improvement, one step of constraint enforcement.” Finally,
we review Lagrangian duality and KKT conditions, interpreting dual variables as constraint
prices and motivating splitting methods such as ADMM. The intended outcome is that, later
in the course, projection, proximal steps, and primal-dual updates can be recognized as the
common computational core behind diverse constrained generation methods.

1 Introduction: optimization as a constraint-injection language

In Lecture 1 we framed constrained-aware generation as sampling or optimization under a target
distribution that blends a base model with soft and hard constraint factors. If pg(x | ¢) is the
base generator and C(c) is a hard feasibility set, then “injecting constraints” in practice means
designing algorithms that repeatedly reconcile two pressures: the model’s plausibility prior and
the external feasibility requirements.

A useful way to see why the same optimization ideas keep reappearing is to isolate the
following design pattern. We maintain an iterate x* that lives in an ambient space X C R%. A
model step proposes a move that improves plausibility or a smooth objective, and a constraint
step then restores feasibility or reduces violation. Projection and proximal operators formalize
the constraint step. Penalty methods formalize the choice to never enforce feasibility exactly, but
to bias solutions toward feasibility. Duality formalizes the idea that constraints can be priced
and enforced by coupling primal variables to multipliers.

Throughout, we focus on convex analysis primitives because they are (i) mathematically crisp,
(ii) computationally reusable, and (iii) robust under composition. Even when the underlying
constraint set is nonconvex (collision-free robotics trajectories, protein stability constraints,
or grammar constraints in text), these primitives still guide the design of relaxations, local
approximations, and splitting strategies.



CS 6501 | L6: Optimization Essentials F. Fioretto

2 Constraint sets and projection

2.1 Constraint sets, distance, and indicator functions

A constraint set is a subset C C R? that encodes hard validity requirements. The simplest convex
constraints are affine subspaces, halfspaces, and norm balls, but the same notation applies to
combinatorial sets after relaxation.

Two auxiliary functions are useful. The distance to a set is

dist(x,€) £ inf [x — |2 1)

The indicator of C is the extended-real-valued function

A |0, x € C,
LC(X)Z{JFOO? x¢C. (2)

While ¢ looks artificial, it is the key bridge from constraint sets to proximal operators in
section 4.

2.2 Euclidean projection is a least-squares problem
Definition 1 (Euclidean projection). For a nonempty closed set C C R?, the Euclidean projection
map 18

1
Projc(v) £ argmin ~|jx — v||3. (3)
xeC 2

If C is convex, the minimizer is unique.

Key identity: projection is least squares

Projection is not an additional primitive. It is the solution of a constrained least-squares
problem. The quadratic term %Hx — v||3 is precisely the least-squares objective measuring
how much we must change v to restore feasibility.

The optimality conditions of equation (3) expose the geometry of feasibility. For a closed
convex set C, define its normal cone at x € C as

Ne(x) é{gERd: (g,y —x) <0 forall y € C}. (4)

Proposition 1 (Optimality condition for projection). Let C C R? be closed and convex, and let
x* = Projo(v). Then
v —x* € Ne(x9). (5)

Equivalently, (v —x*,y —x*) <0 for ally € C.

The vector v — x* is the shortest correction needed to return to the feasible region. The
normal-cone condition equation (5) says that this correction points orthogonally outward from
the feasible set. This fact is often the right interpretation for “constraint forces” inserted into
iterative generation.

2.3 Examples of projections

Affine subspace. Let C = {x : Ax = b} with A € R™*9 full row rank. Projection solves
miny 1||x — v|[3 s.t. Ax =b. The KKT conditions yield

x*=v—A'X", AATX*=Av—b. (6)

Thus projection reduces to solving an m X m linear system when m < d.
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Box constraints. If C = [(1,u1] X -+ X [{4,u4], then projection is coordinatewise clipping:
(Proje(v)),; = min{u;, max{¢;,v;} }.

{5 ball. For C = {x: ||x]j2 <7},

v vie <7
Projc(v):{ i Ivll2 < 7,

vil2

(7)

v, |v|2>r

Probability simplex. Let A= {xcR%:x >0, > ;@i = 1}. The projection onto A% has a
closed form in terms of a threshold 7: (Proj Ad(V))i = max{v; — 7,0} with 7 chosen so that the
entries sum to 1. Computationally, 7 is found by sorting v; and locating the active set. This
projection appears whenever a generative procedure updates a relaxed categorical distribution
and then restores normalization and nonnegativity.

2.4 Projected gradient as a two-step template

Consider the constrained smooth minimization problem

min f(x), (8)

x€eC

where f is differentiable with L-Lipschitz gradient. The simplest algorithm is projected gradient
descent:
x* = Proje (x* — nV f(x")). 9)

The form of equation (9) is the template we will repeatedly reuse in constrained generation: first
a model-driven update, then a feasibility restoration.

Remark 1 (Nonconvex constraints). If C is nonconvex, Proje. may be set-valued and difficult
to compute. In practice, one uses tractable relaxations (convex outer approximations), local
projections, or “projection” defined implicitly through a solver. The algebraic structure of
equation (9) remains useful even when Proj, is approzimate.

3 Penalty methods

Penalty methods enforce constraints by adding violation terms to the objective. They are
the optimization analogue of turning a hard constraint factor 1{x € C} into a soft potential

exp(—Ag(x)).
3.1 From constrained to unconstrained objectives

Consider the generic constrained problem

féﬁ@ f(x) st h(x)=0, gi(x)<0(i=1,...,m). (10)

A quadratic-penalty objective is

. B 2
min (%) + 5 lIh()ll2 +

N D

>l )

where [t]; = max{t,0}. As p — oo, minimizers of equation (11) approach feasibility under
suitable regularity assumptions. The drawback is numerical: large p makes the objective
ill-conditioned, so gradient-based optimization becomes slow and unstable.
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3.2 Exact penalties

Exact penalties aim to achieve feasibility at a finite penalty weight. For equality constraints, the
{1 penalty
min f(x) + p[|h(x) |1 (12)
xeRd

is exact under standard constraint qualifications: for sufficiently large p, minimizers of equa-
tion (12) are solutions of equation (10). A similar statement holds for inequalities using
> :l9i(x)]+. Exactness is a key reason why nonsmooth penalties and proximal operators are
central in modern constrained ML pipelines.

3.3 Example: penalty shaping in generative inference

In constrained generation, one often introduces a violation function v(x, ¢) and samples from
m(x | ¢) x po(x | ¢) exp(—Av(x,c)). When v measures constraint violations (grammar errors,
physical constraint residuals, collision indicators smoothed into a barrier), this is precisely a
penalty method in probabilistic form. The same pathology appears: very large A\ enforces
feasibility but can destabilize inference or lead to poor mixing, while moderate A yields higher
diversity but lower validity. The rest of the course can be read as algorithmic responses to this
tradeoff.

4 Proximal operators and nonsmooth penalties

4.1 Definition and first properties

Definition 2 (Proximal operator). Let g : R? — (—o0, +o0] be a proper, closed, convex function,
and let v > 0. The proximal operator of g is

. 1
prox.,(v) £ arg min {g(x) + 2—||x - v||§} . (13)
x€R4 v

Proposition 2 (Projection is a proximal operator). For a nonempty closed convex set C,

prox., . (v) = Proje(v) for all v > 0. (14)

e

Thus, proximal operators unify hard constraints (¢ = ¢¢) and soft, possibly nonsmooth
penalties (g a regularizer). A prox step can be read as “move toward lower penalty, but stay
close to the proposal v.”

4.2 Canonical proximal maps

¢, regularization (soft-thresholding). For g(x) = ||x||1, the proximal operator is coordi-
natewise soft-thresholding:

(prox7||_”1 (v)), = sign(v;) max{[vs| — ~,0}. (15)

This is the workhorse for sparse structure and exact penalties.

Group sparsity. For g(x) = > g [[%g[l2 (a group ¢21 norm), the prox is blockwise shrinkage.
This matters when constraints or penalties are naturally grouped, as in structured editing of
sequences (edit only a subset of blocks).

Hinge-type penalties. Penalties such as g(t) = [t];+ and g(t) = [t]2 appear for inequalities.
Their proximal maps are 1D closed forms and enable efficient handling of large numbers of
simple constraints.



CS 6501 | L6: Optimization Essentials F. Fioretto

4.3 Forward-backward splitting and proximal gradient

A common optimization form is

min F(x) = f(x) + g(x), (16)

x€ER4

where f is differentiable with L-Lipschitz gradient and g is convex but possibly nonsmooth. The
prozimal gradient (forward-backward) iteration is

1
G prox,, (xk - an(Xk)), 0<n< T (17)
If g = ¢, equation (17) reduces to projected gradient descent equation (9).

Acceleration (optional). FISTA is an accelerated variant of proximal gradient that achieves
the optimal first-order rate O(1/k?) for convex objectives (Beck and Teboulle, 2009). The
important message for this course is not the exact update, but that acceleration is available
whenever we can express constraint enforcement as a prox step.

5 Duality and KKT conditions

Duality formalizes constraint enforcement through multipliers rather than penalties. This is the
conceptual basis for Lagrangian relaxation in constrained decoding, primal-dual control, and
splitting methods like ADMM.

5.1 Lagrangian and dual function

Consider the convex program
min f(x) st. Ax=Db, g¢(x)<0. (18)
X
Its Lagrangian is

L(x, A\ v) = f(x)+ AT (Ax —b) + Z vigi(X), v>0. (19)

The dual function is d(\,v) = infx £(x, A, v). Maximizing d yields the dual problem.
Proposition 3 (Weak duality). For any primal-feasible x and dual-feasible (\,v), d(A,v) <
f(x). In particular, the optimal dual value lower-bounds the optimal primal value.

5.2 Strong duality and Slater

When equation (18) is convex and satisfies Slater’s condition (strict feasibility for inequalities),
strong duality holds and the duality gap is zero (Boyd and Vandenberghe, 2004). In that regime,
primal and dual solutions satisfy KKT conditions.

KKT as “physics” of constrained opt

At a primal-dual optimum (x*, \*, v*), KKT conditions state that (i) the primal point is
feasible, (ii) the dual multipliers are feasible (v* > 0), (iii) stationarity balances objective
gradient and constraint gradients, and (iv) complementary slackness ensures multipliers
activate exactly on tight constraints. This is the cleanest formal meaning of “constraints
exert pressure.”
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Algorithm 1 ADMM (scaled form)

. Initialize x¥, 2%, u® and choose p > 0.

1
2: for k=0,1,2,... do

3 xM!« argmin, f(x)+ 5||Ax + Bz" — c + u¥|3
4 z" « argmin, g(z) + 5| Ax* + Bz — ¢ + u*|)3
)

6

uk+1 — uk + (Axk+1 4 BZkJrl _ C)
: end for

5.3 Example: dual view of projection onto affine constraints

The projection problem onto {x : Ax = b} is
1
min §HX —v[? st. Ax=b. (20)
X

Its Lagrangian is 3[x — v||3 + AT (Ax —b). Minimizing over x yields x = v — AT X and the dual
problem

max — [ ATAR ~ AT(4v ~ b) (21)

whose optimality condition is exactly the linear system in equation (6). This example is worth
remembering because many “projection layers” reduce to solving a small KKT system.

6 ADMM as a reusable splitting mechanism

ADMM is a prototypical algorithm that alternates between two easy subproblems and updates
a dual variable. It is often the right abstraction for “prior step plus constraint step” when the
constraint couples two representations of the object.
Consider
min f(x)+g¢g(z) st. Ax+ Bz =-c. (22)

X,Z

The augmented Lagrangian adds a quadratic penalty to the constraint:
Lox,3,0) = f(x) +g(z) +u' (Ax + Bz — ) + £ Ax + Bz — c|}. (23)

ADMM alternates minimization over x and z and then updates u. When A =1, B = —1, and
c = 0, the z-update becomes a proximal step for g.

ADMM is central in distributed optimization (Boyd et al., 2011), but it is also a conceptual
blueprint for constrained inference procedures: separate a “model variable” from a “constraint
variable,” alternate updates, and use a dual variable to keep them consistent.

7 Summary and outlook

The purpose of this lecture is to make projection, penalties, proximal steps, and duality feel
like a compact constraint toolkit. Projection is a least-squares correction map whose optimality
conditions encode geometry through normal cones. Penalty methods are soft constraint injection
and exhibit a stability-feasibility tradeoff. Proximal operators unify hard sets and nonsmooth
penalties, yielding clean splitting algorithms such as proximal gradient and FISTA. Duality adds
the complementary viewpoint that constraints can be enforced by prices, leading naturally to
primal-dual methods and ADMM.

In subsequent lectures, these primitives will reappear in disguised form: guidance in diffusion
can be read as a penalty shaping term, projection-based diffusion and constrained decoding are
projected or proximal steps on structured sets, and differentiable optimization layers are KKT
systems differentiated implicitly.
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