CS 6501: Constrained-Aware Generative Al

Lecture Notes 7

Diffusion Models and Guidance
DDPM objectives, score perspectives, and algorithmic insertion points for constraints

Prof. Ferdinando Fioretto
Department of Computer Science, University of Virginia

Tuesday, February 3, 2026

Abstract

Diffusion models instantiate a powerful design pattern for constrained-aware generation: a
sample is produced by a long sequence of small, local updates that progressively refine a simple
noise distribution into a complex data distribution. This iterative structure is algorithmically
valuable because it creates many natural insertion points for control mechanisms, including
guidance forces (soft constraints as energy shaping), projections (hard constraints as feasibility
restoration), and repair operators.

These notes develop the denoising diffusion probabilistic model (DDPM) objective and
its score interpretation. We derive the forward noising process, the noise-prediction training
objective, and the reverse sampling recursion. We then introduce guidance mechanisms,
emphasizing the score view in which guidance adds a gradient term to the reverse dynamics,
thereby implementing the course’s constrained target distribution from Lecture 1. Finally,
we connect these updates to the optimization primitives of Lecture 6 by writing a generic
reverse sampler with explicit slots for projection and proximal restoration, and we work
through representative examples such as inpainting and linear inverse problems.

1 Why diffusion is a natural vehicle for constraint injection

In Lecture 1 we emphasized the “fundamental equation” of constrained-aware generation: define
a target distribution by combining a plausibility model with soft constraint potentials and hard
feasibility sets. In Lecture 6 we isolated the optimization primitives that reappear when we try
to compute under such targets, including penalties, proximal maps, and projections.

Diffusion models are a particularly convenient instantiation of this view. They generate by
iterating a local update

x¢—1 < Updatey(xs, t; conditioning) + noise, (1)

where ¢ is a discrete time index descending from a large 7" to 0. Algorithmically, (1) already
resembles the “one model step, one constraint step” template that appears in proximal splitting.
Because the reverse chain takes T' steps, we can couple each step to a control or repair operator.

Throughout the course, we will repeatedly use three families of insertions. First, guidance
adds a drift term that pushes samples toward satisfying a property or condition, often by adding
a gradient of a log-likelihood or an energy penalty. Second, projection and proximal repair
restore feasibility or reduce violation after a model update. Third, discrete repair replaces
gradients by search or rule-based operations when the constraints are symbolic or combinatorial
(Lectures 4 and 9).

This lecture focuses on continuous diffusion and the first two mechanisms, but we phrase
results in a way that anticipates discrete diffusion and constrained decoding.
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2 DDPM: forward process, reverse process, and objective

We follow Ho et al. (2020) and Sohl-Dickstein et al. (2015). The object is a continuous vector
xo € R? (an image, a trajectory representation, a relaxed embedding). The diffusion model
defines a latent Markov chain (Xt)tho by specifying a forward noising process ¢ and learning a
reverse denoising process pg.

2.1 Forward diffusion

Choose a variance schedule (8;)Z_; with 3; € (0,1), and define o, = 1 — ; and the cumulative
product a; £ H’;Zl as. The forward process is

Q(Xt | thl) = N(\/OTtthh ﬁtI)7 t= ]-a s aT' (2)

Because the forward process is linear Gaussian, we can marginalize in closed form:
q(xt | x0) = N (Varxo, (1—a)I). (3)
Equivalently, we can sample x; from x( using a single noise draw € ~ N (0,I):
x; = Vo xo+V1— g e (4)

For reasonable schedules, the end distribution ¢(x7) is close to A/ (0,I), so sampling can start
from pure noise.

2.2 Reverse diffusion and the variational objective

We learn a reverse Markov chain

po(xe—1 | X¢) = N (po (x4, 1), Xt), (5)

with a parameterized mean ug and a chosen covariance schedule ¥, (fixed or learned). Sampling
begins from x7 ~ N (0,I) and iterates t =T, ..., 1.

Training can be derived via a variational bound on — log py(xp), using the forward process
as an approximate posterior over the latent chain:

T

Lyis(0) = Eqpr) |—logpa(xo | x1) + > KL(g(xs-1 | X1, %0) || po(xi—1 | X4)) | + const. (6)
t=2

Here g(x:—1 | X¢,X0) is tractable because the forward chain is Gaussian:

Q(Xt—l \ Xt,Xo) = N(ﬂt(xt;XO)v 5t1)7 (7)
where _ s s
ﬂt(xtaXO) = ;ytiiiﬂtxo + \/OTt(—_at_l)Xt, Bt £ Lt;lﬁp (8)
— Ot 1— g 1— g

2.3 Noise prediction and the “simple” objective

The practical DDPM objective is usually written in the noise prediction form. Define a network
€9(xy,t) that predicts the noise € in (4). Then we can estimate x by

(xt — V1 — a; eg(xy, t)) ) (9)

)A(() (Xt, t)

1
= 7
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Plugging (9) into (8) yields a reverse mean parameterization that matches the true posterior
when Xg = xq:

Ho(xer ) = fie(xe, Ro(xe, 1)) = \/102 <xt - \/%eg(xt,t)> . (10)

A key simplification in Ho et al. (2020) is that, under standard covariance choices, the
variational bound reduces (up to weights) to a denoising regression:

Lsimple(0) = EtUnif{1,... T}, xo~paata, e~N(0,) [Hf - Ga(Xt,t)Hg} ) x; from (4).  (11)

Training repeatedly samples a data point xg, samples a time ¢, creates x;, and regresses to the
known noise.

3 The score view: diffusion as score estimation

Guidance is most naturally expressed by adding gradients to a score-based update. We therefore
connect the noise predictor €y to a score estimator sg(xy,t) &~ Vy, log pr(x¢).
3.1 Score of the forward marginal

The forward conditional (3) is Gaussian, so its score is explicit:

! (x¢ — Vaixo) . (12)

1—ay

vxt log Q(Xt | XO) = -

Using (4), x¢ — Vouxo = V1 — az €, so

Vi, log q(x¢ | x0) = —\/11_70% €. (13)
If €p(x¢,t) predicts €, then a natural score estimator is
A 1
so(x¢,t) = /e €o(x¢,1). (14)

Conceptually, training (11) learns the score fields of the noised data distributions across noise
levels, connecting DDPMs to classical score matching (Hyvérinen, 2005) and to the general
score-based SDE framework (Song et al., 2021).

3.2 Reverse updates as “score plus noise”
The DDPM sampler can be written as
Xt—1 = M@(Xty t) + Ei/Q z, zZ ~ N(07 I)a (15)

with pg given by (10). Since ug depends linearly on €y (and hence on the score via (14)), the
reverse update is “a score-driven step plus Gaussian noise”. This is the main entry point for
guidance: if we want the reverse chain to sample from a tilted target distribution, we add an
extra score term coming from the tilting factor.

4 Guidance as energy shaping

We now connect diffusion guidance to the constrained target distribution perspective from
Lecture 1. Suppose we want samples from

(X0 | €) X Pdata(X0) exp( — A(l)(xo,c)) 1{xp € C(c)}. (16)
If we knew the score of the intermediate marginals 7; at each noise level ¢, we could run the

reverse chain under that score. Guidance approximates the score of a tilted distribution by
adding a term derived from a conditioner.
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4.1 Classifier guidance

Assume a classifier provides p,(y | x¢) for a label or property y. Under standard approximations,
the guided score is

Vi, logp(xi | y) = Vx,logp(x¢) + Vx, logpy(y | x¢). (17)
Operationally, replace sg(x¢,t) by
sguided(xt7 t) = SG(Xt7 t) +w vxz 108;2?@(}’ ‘ Xt)a (18)
where w > 0 is a guidance scale. This increases adherence to y, at the cost of potential
distribution shift and reduced diversity.
It is helpful to rewrite (18) as an energy shaping statement. Define E(xs;y) £ —logp,(y | xt).

Then Vi, logp,(y | x¢) = —Vx, E(X¢;y), so guidance adds a force that decreases the energy,
mirroring the role of the soft constraint potential ¢ in (16).

4.2 Classifier-free guidance

Classifier guidance requires a separate classifier trained on noisy inputs. Classifier-free guid-
ance (CFG) avoids this by training a single denoiser that can operate both conditionally and
unconditionally (Ho and Salimans, 2022). Let €y(x¢,t, c) be the conditional noise predictor and
€9(x¢, t, @) the unconditional predictor (implemented by dropping conditioning during training).
CFG forms a guided predictor

€ctg (X1, t,¢) = (1 + w)ep(xy, 1, ¢) — weg(x4,t, D), (19)

and then uses (10) with €y replaced by €. The difference €g(xy,t,c) — €g(xy, t, @) estimates
the direction in which conditioning changes the score, and scaling this difference amplifies the
conditional signal.

4.3 General energy guidance and property guidance

More generally, suppose we can evaluate a differentiable energy F/(xo,c) that penalizes violation
of a desired property. A simple plug-in strategy is to map E to the noisy space using the
estimate Xo(x¢,t) from (9), and add the gradient of —E(Xo(x¢,t),c) to the reverse drift. This
gives a training-free way to impose differentiable soft constraints, and it mirrors the penalty-force
insertion discussed in Lecture 6.

Remark 1 (When guidance can fail). Guidance is only as reliable as the energy or conditional
model it uses. Large guidance weights can push samples away from the learned data manifold,
producing unrealistic outputs. This is a concrete instance of the plausibility versus validity
tension from Lecture 1. A robust remedy is to combine guidance with feasibility restoration via
projection or a proximal map, which limits drift while still biasing toward constraints.

5 Algorithmic view: reverse diffusion with explicit insertion
points

We now write a generic reverse sampler that exposes explicit insertion points for (i) guidance
forces and (ii) feasibility restoration via projection or proximal steps. This is the key algorithmic
bridge to Lecture 6.

The two lines to focus on are the guidance drift G and the restoration operator R;. Common
choices of R; include

Ri(x) = Proje(x) or Ri(x) = prox,, ,(x), (20)

with Proj and prox as defined in Lecture 6. In this view, the reverse chain becomes a splitting
method: a model-driven stochastic step followed by a feasibility or penalty step.
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Algorithm 1 Reverse diffusion with guidance and feasibility restoration (generic template)

Require: Noise schedule (8;)L;; denoiser €4(-); guidance function G(x,t,c) returning a drift
vector; feasibility operator R(-) (projection, prox, or repair); guidance scale w > 0.
Ensure: Sample xg.
: Sample x7 ~ N (0,1).
cfort=T,T—-1,...,1do
Compute base mean pg(xy,t) via (10) (or using a guided predictor such as (19)).
Compute guided mean fi < pp(x¢,t) + w G(x¢,t, ).

Feasibility restoration x;—1 < R¢(X¢—1).
: end for

1
2
3
4
5. Sample x4 1 + i + Eiﬂz, with z ~ N(0,1I) (or set noise to 0 in implicit samplers).
6
7
8: return xg.

6 Worked examples of constraint insertion

We now give concrete examples that connect diffusion guidance to standard constraint forms
from Lectures 1 and 6.

6.1 Example 1: image inpainting as a hard projection

Consider an image vector x € R? and a binary mask operator M that selects observed pixels. In
inpainting, we require Mx = b for observed values b. This is an affine constraint set

C = {xeR’: Mx =b}. (21)
The Euclidean projection is simple: replace the observed pixels and keep the rest unchanged:
Projo(x) = (I — M)x+ M b, (22)

where M T denotes the embedding back into full space. Thus, in algorithm 1, we can set
R: = Proj for all t. This guarantees exact data consistency at every step, which is often more
stable than enforcing it only at the end.

6.2 Example 2: linear inverse problems and DDRM-style data consistency

Consider noisy linear measurements y = Axg + n with n ~ N(0,0%I). A natural soft constraint
is the negative log-likelihood

1
P(x0) = T‘_QHAXO — 3. (23)

If we use plug-in energy guidance based on Xo(x¢,t), then the added drift is proportional to
. . 1 .
—Vix, ¢(Xo0(xt,t)) = — (Vx, Xo(xt, t))T ﬁAT(AXO(Xtv t) =) (24)

This implements a data-consistency force and is closely related in spirit to diffusion restoration
methods such as DDRM (Kawar et al., 2022). From an optimization viewpoint, this is exactly
the penalty-force insertion from Lecture 6, applied within the reverse chain.

6.3 Example 3: feasibility via proximal restoration
Suppose we have a nonsmooth penalty, such as an ¢; regularizer or total variation:

P(x0) = |Ixollt  or  @(x0) =TV(xo). (25)

Then choosing R¢(x) = prox,, 4(x) yields a principled restoration step that remains well-defined
even when ¢ is nonsmooth. This makes the reverse chain resemble proximal splitting, except
that the model update is a learned denoiser rather than an explicit gradient step.
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7 Implicit sampling: DDIM and an ODE-like interpretation

The ancestral DDPM sampler (15) injects Gaussian noise at every step. Denoising Diffusion
Implicit Models (DDIM) (Song et al., 2020) show that one can define a family of reverse processes
that share the same marginals but vary the amount of stochasticity. A common instantiation
uses a deterministic update (noise set to zero) coupled to the same Xo(xy,t) estimate. This
enables fewer steps and a more ODE-like interpretation.

The controlled-iteration view remains the same: deterministic updates make projection
or proximal steps feel closer to standard optimization algorithms, and they often reduce the
variance of constraint satisfaction across runs.

8 Summary and looking ahead

Diffusion models provide an algorithmic interface for constraint-aware generation that is often
more direct than one-shot generators: the reverse process is a sequence of local updates, and
each update can be augmented with guidance forces and feasibility restoration. The DDPM
objective (11) trains a noise predictor that induces a score estimator (14). Guidance then
implements energy shaping by adding score terms, either from a classifier (18) or via classifier-
free combinations (19). Hard feasibility can be implemented step-wise via projection or proximal
restoration, aligning diffusion sampling with the optimization primitives from Lecture 6.

In Lecture 8 we will make the continuous-time connection more explicit via flow matching and
rectified flows, where the reverse dynamics become an ODE and constraint injection resembles
adding a control term or splitting a vector field. In Lecture 9 we will return to discrete
spaces, where the same insertion-point logic applies but gradients are replaced by search and
combinatorial repair.

References

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning

(ICML), 2015.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations (ICLR), 2021.

A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In International
Conference on Machine Learning (ICML), 2021.

J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022.

J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In International Conference
on Learning Representations (ICLR), 2021.

B. Kawar, M. Elad, S. E. Y. Shimoni, and M. Irani. Denoising diffusion restoration models. In
Advances in Neural Information Processing Systems (NeurIPS), 2022.

A. Hyvérinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6:695-709, 2005.



	Why diffusion is a natural vehicle for constraint injection
	DDPM: forward process, reverse process, and objective
	Forward diffusion
	Reverse diffusion and the variational objective
	Noise prediction and the ``simple'' objective

	The score view: diffusion as score estimation
	Score of the forward marginal
	Reverse updates as ``score plus noise''

	Guidance as energy shaping
	Classifier guidance
	Classifier-free guidance
	General energy guidance and property guidance

	Algorithmic view: reverse diffusion with explicit insertion points
	Worked examples of constraint insertion
	Example 1: image inpainting as a hard projection
	Example 2: linear inverse problems and DDRM-style data consistency
	Example 3: feasibility via proximal restoration

	Implicit sampling: DDIM and an ODE-like interpretation
	Summary and looking ahead

