
CS 6501: Constrained-Aware Generative AI

Lecture Notes 8
Flow Matching and Rectified Flows

Learning vector fields for generative transport, and why ODE form is ideal for constraint
injection

Prof. Ferdinando Fioretto
Department of Computer Science, University of Virginia

Thursday, February 5, 2026

Abstract

Diffusion models (Lecture 7) can be read as controlled stochastic dynamics whose reverse-
time updates admit natural insertion points for guidance and feasibility restoration. Flow-
based alternatives sharpen this view by switching from an SDE-style sampler to an ODE:
generation becomes the numerical integration of a learned time-dependent vector field. This
lecture introduces flow matching as a direct method to learn such vector fields without
likelihood training, and rectified flows as a simplified transport construction that straightens
trajectories to enable fast sampling.

The conceptual point for the course is algorithmic. When sampling is an ODE, constraint
injection looks like adding a control term to the drift, and the standard optimization
operators from Lecture 6 (projection, proximal maps, and splitting) become immediate
building blocks for constrained sampling. We formalize flow matching objectives, derive
practical training losses from path interpolants, discuss rectified flow training and “reflow”
iterations, connect the framework to Neural ODEs, and end with concrete constraint-injection
templates motivated by later splitting methods.

1 From diffusion updates to ODE transport

Lecture 7 emphasized that diffusion sampling is a long sequence of local updates. In continuous
time, the score-based view of diffusion yields an SDE whose drift includes the score (and hence
admits guidance as an additive drift term). Flow-based methods retain the “many small updates”
interface, but replace stochasticity by a deterministic ODE

dxt

dt
= vθ(xt, t), t ∈ [0, 1], (1)

where the learned vector field vθ transports a simple base distribution (often Gaussian noise)
into the data distribution.

Diffusion-to-ODE intuition. A useful way to connect Lectures 7 and 8 is to view both
samplers as defining a time-indexed family of distributions (pt)t∈[0,1] and a rule for moving
particles so that their empirical distribution tracks pt. In diffusion, particles follow an SDE that
combines a drift (often expressed using the score) and injected noise; in flow matching, particles
follow an ODE with no injected noise. In particular, if one runs many particles in parallel and
looks only at their evolving empirical density, both approaches can be interpreted as solving a
transport PDE, with the primary difference being whether the microscopic dynamics include
diffusion.

1



CS 6501 | L8: Flow Matching and Rectified Flows F. Fioretto

Algorithmic interface. Equation (1) should be read as “a simulator with a knob”. The
knob is the vector field vθ(·, t), and numerical integration turns continuous time into a long
sequence of discrete updates, analogous to reverse diffusion steps. This analogy is important for
constrained-aware generation because it explains why constraint mechanisms from optimization
(projection, proximal maps, penalties) can be inserted at the same granularity as the integrator
steps.

Concrete toy example (2D transport). Consider a simple setting where pbase is N (0, I2) in
R2 and pdata is a ring-shaped distribution (points concentrated near ∥x∥2 ≈ 1). An unconstrained
learned vθ can be interpreted as “pushing mass outward” while also redistributing angularly. If
we further impose the hard constraint ∥x∥2 ≤ 1 (a closed unit disk), then projecting after each
step will keep trajectories inside the disk; if instead we impose the soft penalty ϕ(x) = (∥x∥2−1)2+,
adding −η∇ϕ produces a continuous force that discourages leaving the disk without a hard cut.

The ODE form is useful for constrained-aware generation because the insertion points are
explicit. If a constraint is expressed as a penalty potential ϕ(x), the most direct injection is to
modify the drift by adding a control force −η∇ϕ(x) (a continuous-time analogue of penalty
methods). If feasibility is expressed as a set C, then projection or proximal restoration can
be applied after each numerical integration step (a splitting analogue). In other words, ODE
sampling makes constrained generation look like control plus numerical integration, rather than
“one-shot” sampling.

Control perspective (preview). It is helpful to interpret the constrained sampler as

dxt

dt
= vθ(xt, t) + ut(xt), (2)

where the “control” ut encodes constraint correction. Penalty guidance corresponds to ut(x) =
−η(t)∇ϕ(x), while projection or proximal restoration corresponds to an impulsive or split
correction applied at discrete times. This will align directly with later splitting methods, where
one alternates between (i) integrating the learned flow and (ii) applying an optimization operator.

2 Neural ODE preliminaries and the continuity equation

Neural ODEs (Chen et al., 2018) treat vθ(·, t) as a neural network and integrate (1) to define
a mapping from an initial condition x0 to a terminal state x1. For generative modeling, we
interpret the initial state as drawn from a base distribution p0 (noise) and the terminal state as
a sample from a learned distribution p1 (data). The induced time-marginal densities (pt)t∈[0,1]
satisfy the continuity equation

∂tpt(x) +∇ ·
(
pt(x)vθ(x, t)

)
= 0. (3)

Equation (3) says that learning vθ is equivalent to learning how probability mass flows. Con-
tinuous normalizing flows exploit this by training via exact likelihood using an ODE for the
log-density; flow matching instead learns vθ by local regression against target velocities, avoiding
likelihood computation.

Mass conservation and geometric meaning. Equation (3) is the statement that probability
mass is neither created nor destroyed under the dynamics (1). A helpful interpretation is: the
divergence term ∇· (ptvθ) accounts for inflow and outflow of probability through an infinitesimal
volume around x. If ∇ · vθ is negative in a region, trajectories locally contract volume (mass
concentrates); if it is positive, trajectories locally expand volume (mass spreads). This is why a
learned vector field can “morph” a Gaussian into a complex distribution: it can bend trajectories
(redistribute mass) and also compress or expand volume.

2



CS 6501 | L8: Flow Matching and Rectified Flows F. Fioretto

Connection to log-density dynamics (context). Although we will not rely on likelihood
training here, it is useful to remember the standard identity used in continuous normalizing
flows: along a trajectory t 7→ xt, the log-density evolves as

d

dt
log pt(xt) = −∇ · vθ(xt, t), (4)

so computing likelihood reduces to tracking the divergence of the vector field. Flow matching
avoids this computation by not requiring pt or its divergence during training.

Example (why divergence matters). Suppose pbase is isotropic Gaussian in R2 and the
data lie near a 1D curve (for instance, a noisy spiral). To map a full-dimensional Gaussian to
a distribution concentrated near a curve, the flow must contract volume dramatically toward
that curve. This is precisely encoded by negative divergence in regions that funnel trajectories
inward. For constrained-aware generation, this observation matters because a hard projection
step can also introduce abrupt volume contraction, and stability depends on how this interacts
with the learned drift.

For the purposes of this course, (1) is the key: any discretization yields a sequence of small
steps, and every step can be augmented with the optimization primitives of Lecture 6.

Numerical note (stiffness). When vθ(x, t) varies rapidly in x or t, the ODE may become stiff,
making large step sizes unstable. This interacts with constraints: strong projection or strong
penalty forces can effectively add high-curvature components to the dynamics. One practical
takeaway is that “how hard we enforce constraints” and “how coarse we discretize” cannot be
chosen independently.

3 Flow matching as learning a vector field

We follow Lipman et al. (2022).

3.1 Path construction via an interpolant

Let pdata denote the data distribution and pbase a simple base distribution (e.g., N (0, I)). Choose
a coupling between a data sample x1 ∼ pdata and a base sample x0 ∼ pbase. Given a smooth
scalar schedule (α(t), σ(t)) with α(0) = 1, α(1) = 0, σ(0) = 0, and σ(1) = 1, define a stochastic
interpolant

xt = α(t)x1 + σ(t)x0, t ∈ [0, 1]. (5)

This induces a family of time-marginals pt and a conditional distribution over endpoints given
xt. Differentiating (5) yields a pathwise velocity

dxt

dt
= α̇(t)x1 + σ̇(t)x0. (6)

However, the sampler only has access to (xt, t), not the latent endpoints (x0,x1). The “correct”
deterministic velocity field compatible with the interpolant is the conditional expectation

u⋆(x, t) ≜ E
[
α̇(t)x1 + σ̇(t)x0

∣∣ xt = x
]
. (7)

This vector field transports pbase to pdata when used in (1) with appropriate boundary conditions.

Why the coupling matters. The definition of xt in (5) uses a paired draw (x1,x0). If x0 is
sampled independently of x1, the coupling is the product coupling, and the resulting intermediate
marginals pt can be very broad. If instead the coupling aligns x0 to x1 in some informed way
(for example by using a learned encoder, a nearest-neighbor match, or an iterative rectification

3



CS 6501 | L8: Flow Matching and Rectified Flows F. Fioretto

procedure), then the resulting paths can be shorter and less curved. This is one of the main
practical levers for making sampling fast.

Example (image-like data, conceptual). Think of x1 as an image and x0 as Gaussian noise.
With α(t) decreasing and σ(t) increasing, (5) looks like “progressively destroying the image
and replacing it with noise” as t moves from 0 to 1. Flow matching learns the reverse-time
velocity field that deterministically transports noise back into the data manifold. If we impose a
constraint such as “preserve a known region of pixels” (an inpainting mask), then the interpolant
can be modified to keep those pixels fixed, or the learned dynamics can be corrected after each
step by projecting onto the set of images consistent with the mask.

3.2 The flow matching objective

Flow matching learns vθ by regression to the conditional velocity.

Flow matching objective (conceptual form)

min
θ

Et∼Unif[0,1] Ex∼pt

[
∥vθ(x, t)− u⋆(x, t)∥22

]
. (8)

In practice, we do not compute (7) exactly; instead, we use a tractable surrogate that is
unbiased for the conditional expectation. A standard training recipe samples (x1,x0, t), constructs
xt using (5), and then uses the pathwise velocity (6) as a target. Because E[α̇x1 + σ̇ x0 | xt] =
u⋆(xt, t), this yields a valid objective:

min
θ

E
[
∥vθ(xt, t)− (α̇(t)x1 + σ̇(t)x0)∥22

]
. (9)

What is being regressed, operationally? At training time, the target (α̇(t)x1 + σ̇(t)x0)
is a velocity attached to the point xt. Thus the model is trained as a time-conditioned vector
regressor: given a partially-interpolated sample xt and the scalar t, output the direction in
Rd that moves xt along the transport path. This framing makes it clear why the method is
compatible with later constraint injection: any time you can evaluate a constraint signal at xt,
you can add a correction direction to this velocity.

Example (choice of schedule). If α(t) = 1 − t and σ(t) = t, then (5) becomes linear
interpolation and (6) becomes constant in t given endpoints. If instead σ(t) grows very slowly
near t = 0 and quickly near t = 1, then the early portion of the path stays closer to data and
the late portion transitions rapidly to noise. This affects both learning difficulty (where the
regression targets have higher variance) and sampling stability (where the vector field changes
more abruptly in time).

Remark 1. The freedom to choose the interpolant (5) is a major modeling knob. Different
schedules change the geometry of the transport, numerical stiffness of (1), and the effectiveness
of later constraint injection. Rectified flows can be read as a specific choice aimed at simplifying
the geometry.

Constraint-aware interpolants (preview). In some applications, we may bake constraints
directly into the interpolant. For instance, if C encodes a linear equality Ax = b, one can define an
interpolant that always stays in the affine subspace by replacing x0 and x1 with their projections
onto {x : Ax = b}, or by adding an explicit correction term that cancels constraint-violating
components along the path. This idea parallels “architecture as feasibility bias” from earlier
lectures, now expressed as “path design as feasibility bias”.

4



CS 6501 | L8: Flow Matching and Rectified Flows F. Fioretto

3.3 Sampling: integrating the learned ODE

Once trained, generation is performed by drawing x0 ∼ pbase and integrating (1) from t = 0 to
t = 1. A simple Euler discretization with step size h yields

xk+1 ← xk + hvθ(xk, tk), tk = kh, k = 0, . . . , ⌊1/h⌋ − 1. (10)

More accurate integrators (Runge–Kutta, adaptive solvers) are possible, but for constrained-
aware generation Euler is often preferable because it exposes explicit “after-step” hooks for
projection and repair.

Example (Euler with a repair operator). If R(·) is a discrete repair routine (possibly
non-differentiable, as in Lecture 4 constrained decoding), then Euler sampling with repair
becomes

x̃k+1 ← xk + hvθ(xk, tk), xk+1 ← R(x̃k+1), (11)

which is a direct ODE analogue of inserting symbolic correction into a generative procedure.
This is precisely the “natural insertion point” that motivates later splitting methods.

4 Rectified flows: simplified transport and fast sampling

Rectified flow methods (Liu et al., 2022) aim to learn a flow whose trajectories are close to
straight lines, making coarse discretizations effective.

4.1 Straight-line interpolants and constant pathwise velocity

Consider the simplest interpolant between an endpoint pair (x0,x1):

xt = (1− t)x0 + tx1. (12)

The pathwise velocity is constant:
dxt

dt
= x1 − x0. (13)

If we could condition on endpoints, transporting along (12) would be trivial. But as in flow
matching, the sampler conditions only on (xt, t), so the correct drift is the conditional expectation
E[x1 − x0 | xt], which is generally nontrivial.

Geometric interpretation. Rectified flows attempt to select (or learn) couplings and dynamics
so that the effective transport resembles linear interpolation in the ambient space. When this
succeeds, fewer integration steps are needed because the vector field varies slowly along the path.
This also tends to reduce the accumulation of discretization error, which is a primary limiter of
fast ODE sampling.

Rectified flow training uses the flow matching recipe with the straight-line interpolant. The
practical loss is therefore

min
θ

E
[
∥vθ(xt, t)− (x1 − x0)∥22

]
, (14)

where (x0,x1) are sampled from a chosen coupling between base and data.

Example (why conditioning is hard). Even though (13) is constant given endpoints, the
conditional expectation E[x1 − x0 | xt = x] can vary significantly with x. Intuitively, the same
intermediate point xt = x may be compatible with many different endpoint pairs. The model
vθ(x, t) learns a single best average direction that, when integrated across time, yields the correct
marginal transport.

5



CS 6501 | L8: Flow Matching and Rectified Flows F. Fioretto

4.2 Why “rectification” matters

The goal is not only to fit (14), but also to make the learned conditional velocity field as aligned
as possible across time so that numerical integration with few steps introduces limited error.
Liu et al. (2022) propose iterative “reflow” procedures that update the coupling by sampling
with the current model, then re-train, progressively straightening paths.

What reflow is doing, conceptually. If the current model generates samples that are already
“closer” to data than pure noise, then coupling those generated samples with real data points
can produce shorter, less curved transports for the next training round. Thus reflow gradually
replaces an initially poor coupling (noise paired with data independently) with a coupling aligned
to the learned geometry of the model. You can think of this as repeatedly refining the training
distribution of paths so that the regression target becomes easier and the induced ODE becomes
simpler to integrate.

For constrained-aware generation, straighter paths mean fewer steps and less opportunity for
constraints to drift. This is a double-edged sword: fewer steps reduces compute and accumulation
of numerical error, but also reduces the number of correction opportunities. Later lectures on
splitting methods will formalize when fewer, larger steps are stable under projection or proximal
correction.

Example 1 (Fast sampling and constraint opportunities). Suppose C encodes a simple hard
feasibility set (e.g., a box constraint or a convex cone). Under a many-step sampler, projecting
after every step can keep the trajectory near C. Under a very coarse rectified sampler, projection
may introduce large discontinuities that the remaining steps cannot repair. This is one reason
why splitting (model drift vs constraint correction) and step-size schedules matter.

Example (discrete structure via continuous embedding). Suppose the underlying object
is discrete (a sequence or a graph) but we model it in a continuous embedding space, as in
earlier lectures when using relaxed representations. Rectified flows may allow very few steps in
embedding space, but the final rounding or decoding step can reintroduce constraint violations
(syntax, valency, graph connectivity). This is where a “projection-like” operator can mean a
symbolic repair routine, not a Euclidean projection. The same splitting logic applies, but the
correction operator is now combinatorial.

5 Constraint injection in ODE form: control and splitting

We now make explicit the algorithmic point stated in the lecture title: ODE sampling turns
constrained generation into controlled dynamics and motivates later splitting methods.

5.1 Soft constraints as control forces

Recall the constrained target template from Lecture 1,

π(x) ∝ pdata(x) exp(−λϕ(x)), (15)

where ϕ is a differentiable penalty. In ODE sampling, the most direct insertion is

dxt

dt
= vθ(xt, t)− η(t)∇ϕ(xt). (16)

Equation (16) is the continuous-time analogue of “guidance” from diffusion (Lecture 7), but now
the control term is simply added to the drift. When ϕ is not differentiable, ∇ϕ can be replaced
by a subgradient or, more robustly, by a proximal correction in a split scheme (below).

6



CS 6501 | L8: Flow Matching and Rectified Flows F. Fioretto

Example (quadratic penalties recover familiar dynamics). If ϕ(x) = 1
2∥Ax− b∥22, then

−∇ϕ(x) = −A⊤(Ax− b) is a linear restoring force toward feasibility. Inserting this force into
(16) yields a drift that combines the learned generative transport with a least-squares feasibility
correction, directly mirroring the penalty-method viewpoint from Lecture 6. Time-dependent
weights η(t) can emphasize constraint satisfaction later in the trajectory (when samples are
closer to the data manifold) or earlier (to prevent leaving feasible regions).

Example (classifier-style guidance analogue). If ϕ(x) is a differentiable surrogate for
“constraint violation” computed by a predictor (for example, a property predictor in molecules or
a differentiable validity proxy in sequences), then −∇ϕ is exactly the direction that most rapidly
improves the predicted property under a first-order approximation. Thus (16) can be read as
property guidance in an ODE sampler. A practical issue is calibration: if the predictor gradients
are unreliable far from the data manifold, one often schedules η(t) to be small at early times
and larger later.

5.2 Hard constraints via projection and proximal restoration

Let C ⊆ Rd be a feasibility set. A simple constrained sampler applies a projection after each
numerical step:

x̃k+1 ← xk + hvθ(xk, tk), xk+1 ← ProjC(x̃k+1). (17)

If feasibility is soft or nonsmooth (e.g., sparsity, total variation, or piecewise-linear penalties),
replace projection by a proximal operator:

xk+1 ← proxhλϕ(x̃k+1). (18)

This mirrors the penalty and proximal methods from Lecture 6, with the difference that the
“descent” direction is provided by the learned transport field, not by the gradient of a known
objective.

Example (simplex or box constraints). If C is a box {x : ℓ ≤ x ≤ u}, then ProjC is
coordinate-wise clipping, and (17) becomes extremely cheap. If C is a probability simplex (as in
discrete relaxations), then ProjC is the Euclidean simplex projection from Lecture 6, and (17)
becomes “integrate in logit space, then re-normalize by projection”. These two examples show
why flows are attractive for constrained generation: the correction step can be selected to match
the constraint geometry.

Example (prox for sparsity). If ϕ(x) = ∥x∥1, then proxhλϕ is soft-thresholding, and (18)
enforces sparse structure after each drift step. This is a canonical instance where the correction
is non-smooth but computationally simple, and it illustrates why proximal restoration is often
more robust than subgradients in practice.

5.3 Splitting view and why it will matter later

Write a constrained sampler abstractly as a composition of two operators per step: a model-
driven drift update and a constraint correction. When the correction is projection or a proximal
map, this is a first-order splitting method. A Strang-type symmetric splitting would apply
half a correction, then a drift step, then another half correction, improving stability when the
constraint correction is strong.

Why splitting is the right abstraction. From the numerical analysis viewpoint, (16) mixes
two vector fields (generative drift and constraint force) and then discretizes. Splitting instead
discretizes each component separately and composes the resulting maps. This distinction matters
when the correction operator is not naturally expressed as a smooth vector field (projection,
repair, proximal steps): in those cases, splitting is the only faithful way to represent the
correction.

7



CS 6501 | L8: Flow Matching and Rectified Flows F. Fioretto

We defer the formal treatment to later lectures, but the high-level message is: flow samplers
are numerical integrators, and constraint injection is operator splitting. This connection will
be central when we discuss stability, step size, and tradeoffs between fast sampling and robust
feasibility.

6 Riemannian flow matching and structured domains

Many scientific domains live on manifolds or quotient spaces (periodic crystals, rotations, shape
spaces). Euclidean vector fields can introduce artifacts when the state has geometric constraints.
Miller et al. (2024) extend flow matching to Riemannian settings, learning vector fields on
manifolds using tools such as the exponential map and logarithm map.

Example (rotations). If the state contains orientations, representing them in R3 as un-
constrained vectors and transporting with an Euclidean ODE can drift off the manifold of
valid rotations. A Riemannian approach instead learns tangent vectors on SO(3) (or a related
representation) and updates via retraction or the exponential map so that every step stays
on-manifold. This is analogous in spirit to hard constraints: the manifold structure is a feasibility
set built into the state space.

Example (periodic crystals). For crystalline materials, lattice parameters can have periodic
or quotient structure, and naive Euclidean interpolation between lattice representations can
pass through physically meaningless intermediate states. Riemannian flow matching treats these
variables in a geometry-aware way, which can reduce artifacts and improve sample validity even
before any additional constraints are injected.

At a high level, the modification is conceptual: the ODE (1) is replaced by a manifold-valued
ODE, and the regression targets in (9) are interpreted as tangent vectors. Algorithmically, this
is aligned with the course theme: geometric structure acts as an architectural feasibility bias,
and explicit constraints can then be injected as additional tangent-space control terms or as
projection back to the manifold after a numerical step.

Constraint injection on manifolds (preview). In a manifold setting, “projection” may
mean projecting an ambient-space update back onto the manifold (via a retraction), while
“gradient penalty” may mean using the Riemannian gradient of ϕ. The same operator-splitting
viewpoint applies, but all corrections are interpreted in the tangent space.

7 Summary and looking ahead

Flow matching learns a time-dependent vector field by local regression against target velocities
induced by a chosen interpolant, and sampling is performed by integrating an ODE. Rectified
flows specialize this construction toward straight trajectories, enabling fast sampling with coarse
discretization.

Practical course takeaway. From the constrained-generation perspective, flow methods are
attractive not because they are “more deterministic” than diffusion, but because they expose
a clean numerical interface: every generation run is an integration loop. That loop is exactly
where we can attach constraint checks, penalties, repairs, and splitting operators, and it is where
we can reason about stability and compute budgets.

For constrained-aware generation, the ODE form is the key interface. Soft constraints can be
injected as additive control forces in the drift, and hard constraints can be enforced by projection
or proximal restoration after each integrator step. This naturally motivates operator splitting
viewpoints, which will be formalized in later lectures when we study stability and the design of
constraint correction schedules.

8



CS 6501 | L8: Flow Matching and Rectified Flows F. Fioretto

Example (preview of later splitting design). If constraint corrections are expensive (e.g.,
running a simulator or solving a combinatorial repair), one may apply them only every m steps,
or use a coarse-to-fine schedule where corrections become more frequent as t→ 1. These design
choices will be treated as splitting schedules, and later lectures will connect them to stability
tradeoffs and feasibility guarantees.

References

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747, 2022.

X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data
with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

R. Miller, S. Madireddy, A. Ziabari, P. Balachandran, and F. Fioretto. FlowMM: Generating
materials with Riemannian flow matching. In International Conference on Machine Learning
(ICML), 2024.

9


	From diffusion updates to ODE transport
	Neural ODE preliminaries and the continuity equation
	Flow matching as learning a vector field
	Path construction via an interpolant
	The flow matching objective
	Sampling: integrating the learned ODE

	Rectified flows: simplified transport and fast sampling
	Straight-line interpolants and constant pathwise velocity
	Why ``rectification'' matters

	Constraint injection in ODE form: control and splitting
	Soft constraints as control forces
	Hard constraints via projection and proximal restoration
	Splitting view and why it will matter later

	Riemannian flow matching and structured domains
	Summary and looking ahead

