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Abstract

Discrete diffusion models extend the diffusion pattern of Lectures 7–8 to categorical objects
such as token sequences, code, or molecular strings. The key shift is that the state space is
not Rd but a finite vocabulary V, so the forward “noising” process is a Markov chain over
categorical variables rather than Gaussian perturbations. This matters for constrained-aware
generation: (i) the model defines and samples from a joint distribution over all tokens, which
weakens the sequential bottleneck and exposure bias of autoregressive decoding from Lecture
4; (ii) intermediate states are partially corrupted or masked, which creates natural insertion
points for symbolic constraints, verifiers, and feasibility restorers; (iii) the model outputs
live in probability simplices, so some constraints can be enforced directly by projection or
proximal steps on distributions, reusing the optimization primitives from Lecture 6.

These notes introduce the D3PM formulation [Austin et al., 2021] and masked diffusion
language modeling [MDLM, 2024], contrast them with ratio/score viewpoints such as SEDD
[Lou et al., 2023], and then develop three practical mechanisms for injecting constraints:
constrained unmasking policies, constrained decoding on intermediate representations, and
simplex projection with constraints. The lecture is designed as the bridge into the course lab
phase on discrete constraints, before we introduce duality-based methods.

1 Why discrete diffusion for constraint-aware generation?

Lecture 4 framed autoregressive (AR) generation as incremental search over prefixes, with natural
insertion points for constraints that are prefix-checkable (finite-state, grammar, lexical). This
framework is operational and widely used, but it exposes two structural frictions that become
sharp in constrained settings.

First, AR sampling is sequential: each token must be generated before the next token
distribution exists. When constraints are global (template completion, balanced structures,
required sets of entities, program type correctness, molecule validity, safety policies that depend
on the entire output), enforcing them through local token-by-token decisions is brittle, and
search procedures can easily prune all feasible hypotheses early.

Second, the AR factorization controls the joint distribution indirectly by specifying condi-
tionals pθ(yt | y<t, x). Even if every local step is plausible, global validity can fail, and repairing
a late error may require rewriting earlier tokens, which is awkward for prefix-based decoding.

Discrete diffusion offers a different interface: it defines a joint distribution over the full
sequence and generates by iteratively denoising a corrupted sequence. At step t, many positions
can change, and the model can revise earlier mistakes without rewinding a prefix. This makes
constraint injection look closer to the “one model step, one constraint step” template from
Lectures 6–7, except the object being updated is discrete.
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Throughout we reuse the course’s constrained target distribution viewpoint from Lecture 1.
If y ∈ VT is the output sequence and x is context, we want to sample from

π(y | x) ∝ pθ(y | x) exp(−λϕ(y, x))1{y ∈ C(x)}, (1)

where pθ is a base generative model (here a discrete diffusion model), ϕ is a soft constraint
potential (a verifier score, toxicity penalty, semantic alignment loss), and C(x) is a hard feasibility
set (grammar, automaton, structured fields, domain rules). The lecture goal is to show how
discrete diffusion creates practical insertion points for approximating inference under (1).

2 Discrete state space and probability simplices

Let V be a finite vocabulary of size K := |V|. A categorical variable z ∈ V has a distribution
p ∈ ∆(V) := {p ∈ RK

≥0 :
∑

v∈V p(v) = 1}. A length-T token sequence is y = (y1, . . . , yT ) ∈ VT ,
and a factorized distribution across positions can be represented as a product of per-position
simplices,

∏T
i=1∆(V). Importantly, a diffusion model’s intermediate representation often includes

such per-position distributions even when the eventual sample is discrete.
Two concrete representations will recur.

One-hot representation. For a token z ∈ V, let e(z) ∈ {0, 1}K be its one-hot vector. Then
a categorical distribution is a convex combination of one-hots, and many diffusion kernels can
be expressed as linear maps acting on one-hots.

Masked representation. Many language-oriented discrete diffusion models introduce a special
absorbing symbol [MASK] and treat intermediate states as partially observed : some positions are
actual tokens, some are [MASK]. This yields a state space (V ∪ {[MASK]})T and emphasizes the
denoising-as-filling-in interpretation.

The simplex viewpoint is central for constraint-aware generation: several constraints can
be expressed as linear constraints on probabilities (forbidden tokens, minimum mass on a set,
marginals, and mixture constraints), enabling feasibility restoration by projection or proximal
operators, exactly as in Lecture 6.

3 D3PM: structured denoising diffusion in discrete state-spaces

We present the D3PM formulation of Austin et al. [2021], which generalizes the continuous
DDPM pattern from Lecture 7 to categorical states.

3.1 Forward process: categorical noising as a Markov chain

Fix a time horizon T and define a forward Markov chain (yt)
T
t=0 on VT . For clarity, consider a

single position first. Let zt ∈ V denote the token at that position at time t. The forward noising
is specified by a sequence of transition matrices (Qt)

T
t=1 where each Qt ∈ RK×K is row-stochastic:

q(zt = v | zt−1 = u) = Qt[u, v]. (2)

Typical choices include “uniform corruption” kernels that slowly mix toward the uniform
distribution, and “absorbing” kernels that gradually replace tokens by [MASK] (or by a generic
noise token). For sequences, one often applies (2) independently across positions, yielding

q(yt | yt−1) =
T∏
i=1

q(yt,i | yt−1,i) . (3)
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The cumulative transition matrix is Q̄t := Q1Q2 · · ·Qt, so the marginal is tractable:

q(zt = v | z0 = u) = Q̄t[u, v]. (4)

This exact marginal tractability plays the role that the Gaussian closed form q(xt | x0) played in
Lecture 7.

3.2 Reverse model and training objective

We learn a reverse-time chain pθ(zt−1 | zt) (or pθ(yt−1 | yt, x) in the conditional case). A standard
parameterization is to output logits over V and form a categorical distribution via softmax:

pθ(zt−1 = u | zt = v, x) = softmax(ℓθ(v, t, x)) [u], (5)

where ℓθ is produced by a Transformer-like network that takes the corrupted sequence at time t
and optional conditioning x.

Training mirrors the DDPM variational bound: one can write a bound on − log pθ(y0 | x)
using the forward chain as an approximate posterior over intermediate states. The key point for
practice is that the bound decomposes into a sum of KL terms between tractable categorical
distributions and the learned reverse conditionals. This yields objectives that resemble cross-
entropy on tokens at different noise levels.

In many implementations, rather than predicting a continuous noise ϵ, the model predicts
either the original token y0 (a denoising classifier) or the previous token yt−1. The denoising
classification objective has the form

Ldenoise(θ) = Et, y0∼pdata, yt∼q(·|y0) [ − log pθ(y0 | yt, t, x) ] , (6)

where pθ(y0 | yt, t, x) is typically factorized across positions but shares parameters through
the network. This objective is the discrete analogue of the “simple” objective in Lecture 7: it
regresses to the clean object from a corrupted view.

Remark 1 (What changes relative to continuous DDPM). The computational pattern is the
same: sample a data point, sample a time, corrupt it with the forward kernel, then train a
network to predict a reverse object. The mathematical difference is that the noise model is
categorical, so the score/gradient view must be replaced by either (i) ratio estimators (SEDD) or
(ii) masking and classification (MDLM), and feasibility restoration can often be implemented
directly as masking or projection in the simplex.

4 Masked diffusion language models (MDLM) as an absorbing-
kernel case

Masked diffusion is especially convenient for text because it matches the inductive bias of
modern masked language modeling while still defining a diffusion-style reverse process. The key
modeling move is to enlarge the state space from tokens to tokens plus a mask symbol. Let V
be a vocabulary of size K and define V ′ := V ∪ {[MASK]}. A sequence at time t is yt ∈ (V ′)T ,
where masked positions represent uncertainty that will be resolved gradually.

4.1 Forward process: progressively masking with an absorbing state

A simple and widely used forward noising process replaces tokens by [MASK] with probability βt
at step t, and leaves them unchanged with probability 1− βt. Once a position becomes masked,
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it stays masked forever under the forward process (the mask is absorbing). For a single variable
zt−1 ∈ V ′, define

q(zt | zt−1) =


1− βt if zt = zt−1 ∈ V,
βt if zt = [MASK] and zt−1 ∈ V,
1 if zt−1 = [MASK] and zt = [MASK],

0 otherwise.

(7)

For sequences yt ∈ (V ′)T , one usually applies this independently across positions:

q(yt | yt−1) =
T∏
i=1

q(yt,i | yt−1,i). (8)

This factorized forward kernel is easy to sample and yields a clean interpretation: as t increases,
more positions become masked. The schedule (βt) controls how rapidly information is destroyed.

Even though (7) is simple, it shares a structural property with the Gaussian forward process
in continuous diffusion: we can compute marginals q(yt | y0) efficiently because the corruption
acts independently per position and has a closed-form description. In particular, for each position
i, there is a time-dependent probability that it is still unmasked. Let

αt :=
t∏

s=1

(1− βs), (9)

so αt is the probability that a token survives (stays unmasked) through t forward steps. Then
for any original token y0,i ∈ V,

q(yt,i = y0,i | y0,i) = αt, q(yt,i = [MASK] | y0,i) = 1− αt. (10)

Equation (10) is the masked analogue of the DDPM marginal q(xt | x0) from Lecture 7: it lets
us train by sampling a time t, corrupting y0 to yt, and then predicting some target based on
(yt, t).

4.2 Reverse-time modeling: “fill the masks” as iterative refinement

The reverse process conceptually undoes masking: it turns a heavily masked yT into an unmasked
y0 ∈ VT . Unlike AR decoding, reverse steps can revise multiple positions because the model
conditions on the full partially observed sequence.

There are two common modeling interfaces, and it is useful to keep them distinct.

(A) Predict the clean tokens (denoise-to-data). Train a network to predict the original
tokens at masked (and possibly unmasked) positions:

pθ(y0 | yt, t, x) =
T∏
i=1

pθ,t,i(y0,i | yt, x), (11)

where pθ,t,i(·) is categorical on V (often produced by logits and softmax). A simple objective is
cross-entropy on the original tokens, evaluated on positions that were corrupted:

LMDLM(θ) = Et, y0∼pdata, yt∼q(·|y0)

− ∑
i:yt,i=[MASK]

log pθ,t,i(y0,i | yt, x)

 . (12)

At sampling time, a schedule chooses a subset of masked positions to fill using the distributions
pθ,t,i(·), producing yt−1.
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(B) Predict reverse transitions. Alternatively, one can attempt to parameterize pθ(yt−1 |
yt, t, x) directly, matching the D3PM style. In masked diffusion, this often reduces to specifying
rules for how many masks are removed per step and how tokens are proposed.

For the constraint-aware agenda, both interfaces lead to the same practical insertion point:
at each reverse step we obtain per-position distributions over candidate tokens for at least some
positions. This is precisely what we will mask, project, or decode with constraints in Section 7.

4.3 Unmasking schedules and why they matter for constraints

A masked diffusion sampler must decide when each position becomes committed to a token.
This decision is a schedule. A simple schedule fills a fixed fraction of remaining masks each step,
or fills positions in random order. More structured schedules use uncertainty measures, such as
selecting positions with lowest entropy first (easy tokens) or highest entropy first (hard tokens).

In constrained generation, the schedule is not merely a sampling detail. It is a control knob
for feasibility. Many constraints are easier to satisfy when some positions remain flexible until
the algorithm has stabilized the high-level structure. For example, if the output must satisfy a
schema, it is often better to commit structural tokens (braces, commas, separators, required
keys) before committing free-form values. If the output must contain a specific phrase, it can
be helpful to reserve a masked span for that phrase until the surrounding context is coherent.
These are instances of the general principle that constraints are often structural while quality is
often semantic; masked diffusion lets us delay semantic commitment until structural feasibility
is secured.

This is one of the central reasons that MDLM-style processes are attractive for the lab:
they provide a direct mechanism (the unmasking schedule) to couple constraint progress with
sampling dynamics without changing the base network.

4.4 Connection to AR modeling: joint distribution control versus conditional
control

AR models define p(y | x) =
∏T

i=1 p(yi | y<i, x) and are trained to predict each next token
given a prefix. Constraints are enforced by manipulating decoding, but the model itself does
not revise earlier tokens. Masked diffusion instead represents uncertainty with [MASK] and
repeatedly refines a full configuration. The reverse chain therefore behaves like a joint optimizer
over token configurations: it can repair earlier choices because those choices are not privileged
as an irreversible prefix.

This is the concrete meaning of “joint distribution control versus AR conditionals” in this
lecture. It does not mean that the model is magically globally optimal. It means the sampling
interface gives you repeated opportunities to enforce constraints, repair violations, and reallocate
probability mass, which is exactly the insertion-point story from Lectures 6–7 transported to
discrete spaces.

4.5 A constraint-aware view of MDLM: feasibility on partial information

A final advantage of masked diffusion for constraints is that partial sequences can still be checked.
Many constraints admit meaningful evaluation on incomplete objects. A parser can rule out
illegal next tokens even when some positions are unknown. A lexical constraint tracker can
maintain which required words are still missing. A schema checker can maintain which fields
are already present. This yields an incremental feasibility state σt that is updated as masks are
filled and that can restrict candidate tokens at each step. This will be formalized in Section 7 as
constrained unmasking policies and constrained decoding over intermediate representations.

From the perspective of constrained-aware generative modeling, MDLM can therefore be
summarized as follows: it replaces the AR notion of “prefix” with a notion of “partial observation,”
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and this partial observation is often a better substrate for symbolic constraint tracking and
targeted repair.

5 SEDD: ratio estimation as a discrete analogue of scores

In continuous diffusion (Lecture 7), the score ∇x log pt(x) provides a local object that drives
reverse-time dynamics and supports guidance by additive modifications of that score. In discrete
spaces, there is no derivative with respect to tokens, so we need a different local object that
plays an analogous role. One principled choice is to work with log-probability ratios between
neighboring configurations. This is the organizing idea in SEDD [Lou et al., 2023], and it is
also the right abstraction for constraint injection because many constraints act by selectively
reweighting candidate tokens relative to one another.

5.1 From gradients to local log-ratios on neighborhoods

Let Ω be a discrete state space. For language we can take Ω = VT , and for a single position
Ω = V. A discrete analogue of a “local derivative” is obtained by fixing a neighborhood
structure (a graph) on Ω. The simplest and most common choice for sequences is the Hamming-1
neighborhood: y′ is a neighbor of y if the two sequences differ at exactly one position. For each
state y and each neighbor y′, define the log-ratio

ρt(y → y′) := log
pt(y

′)

pt(y)
. (13)

If we can evaluate ρt(y → y′) for all neighbors, then we can define local moves that prefer
higher-probability neighbors, exactly the discrete analogue of flowing uphill along ∇x log pt(x).

For a single categorical variable z ∈ V, a standard reduction fixes a reference token v⋆ and
parameterizes the distribution via log-ratios

rt(v) := log
pt(z = v)

pt(z = v⋆)
. (14)

Given {rt(v)}v∈V , the distribution is recovered by normalization:

pt(z = v) =
exp(rt(v))∑
u∈V exp(rt(u))

, with rt(v
⋆) = 0. (15)

This mirrors the continuous identity that knowing the score field determines the density up
to normalization constants (under appropriate integrability conditions), but now the object is
discrete and defined relative to a reference.

5.2 Why ratios are the right interface for guidance and constraints

Ratios are especially convenient because many modifications to a base distribution are multi-
plicative, and multiplicative changes become additive in log-ratio space. Suppose we define a
constrained or guided target at time t by reweighting pt using an energy (or penalty) term Ut(y):

p̃t(y) ∝ pt(y) exp(−Ut(y)). (16)

Then the log-ratio of p̃t between neighbors is

log
p̃t(y

′)

p̃t(y)
= log

pt(y
′)

pt(y)
−
(
Ut(y

′)− Ut(y)
)
= ρt(y → y′)−∆Ut(y → y′). (17)

Equation (17) is the discrete analogue of guided scores: you keep the model’s local preference ρt,
and you add an additive correction derived from the constraint potential. This is conceptually
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the same pattern as classifier guidance or energy guidance in continuous diffusion, but expressed
in an object that is well-defined on token spaces.

In practice, constraints are often not expressed as smooth energies but as symbolic admissibil-
ity. Even then, ratios remain useful. If a token choice is forbidden, the corresponding move can
be assigned log-ratio −∞ (or equivalently probability zero after normalization). If a constraint
requires allocating probability mass to a subset, the ratio correction can be interpreted as a
log-barrier or soft preference that pushes probability mass toward that subset. This viewpoint
will be useful later when we discuss the boundary between hard feasibility restoration (masking,
projection) and soft preference shaping (guidance).

5.3 SEDD at a high level

SEDD [Lou et al., 2023] builds a diffusion-like generative process on discrete spaces using ratio
estimation rather than direct denoising classification. The model learns to predict suitable local
ratio objects that permit reverse-time sampling over discrete states. The key takeaway for this
course is not the full derivation, but the interface it provides: rather than a per-position “predict
the clean token” objective, ratio-based methods emphasize estimators that support local moves
and that can be straightforwardly modified by additive constraint corrections, as in (17).

This makes SEDD a natural conceptual bridge between (i) score-based continuous diffusion
and (ii) constrained discrete generation where the most actionable signals are local comparisons
between token alternatives under a partially specified structure.

6 Sampling: ancestral updates, parallelism, and blocks

Sampling is where discrete diffusion differs most from AR decoding in an operational sense.
Even when the learned model resembles a masked language model producing logits, the sampling
procedure is not a single left-to-right pass. Instead it is a reverse-time chain that repeatedly
revises a partially specified sequence. This section makes explicit what is being sampled and
why different update granularities (single-site, subset, block) matter for constraints.

6.1 What a reverse step produces

At reverse time t, the sampler has a partially corrupted configuration yt. A reverse model can
be parameterized in (at least) two common ways.

The first is direct reverse transition prediction: a network parameterizes pθ(yt−1 | yt, t, x),
often factorized across positions or blocks conditioned on the full context. This is closer to the
original D3PM variational formulation [Austin et al., 2021].

The second is denoise-to-data prediction: a network predicts a distribution over the clean
data, pθ(y0 | yt, t, x), and a reverse step is implemented by sampling a partially denoised state
from this prediction with a schedule that determines which positions are committed at each
time. Masked diffusion language models frequently use this interface [MDLM, 2024] because it
is natural to treat yt as a masked sequence and predict tokens for the masked positions.

Both parameterizations yield, at the level of implementation, per-position (or per-block)
categorical distributions. This is exactly what we need to insert constraints: we can mask
distributions, project them onto constrained simplices, or run a constrained inner decoding
routine without changing the network.

6.2 Single-site versus subset updates

A convenient mental model for discrete reverse-time sampling is iterated local updates. At each
step, the sampler chooses a subset of positions mt ⊆ {1, . . . , T} to update and leaves the rest
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unchanged. When mt is a singleton, this resembles Glauber dynamics on sequences. When mt

includes many positions, the step becomes a partially parallel update.
Subset updates matter for constraints because they expose a compute allocation mechanism.

If the constraint checker identifies a small set of positions responsible for a violation (for example,
a mismatched bracket or a missing required key), then choosing mt to focus on those positions
yields an efficient repair-oriented sampler. Conversely, if we update all positions aggressively,
we often introduce unnecessary randomness that destabilizes already-feasible structure. The
constrained-aware sampling agenda therefore benefits from update schedules that become more
conservative over time and that focus on violating regions.

6.3 Parallelism and the “joint control” advantage

Discrete diffusion is sometimes summarized as providing a “joint” model rather than an AR
factorization. Operationally, the advantage is that the model conditions on the entire current
configuration yt and can propose revisions to multiple positions based on global context. Even
though the Markov chain runs over time, the per-step computation is parallel over positions,
and early choices do not become irrevocable prefixes.

This matters for global constraints. If a constraint couples distant positions, AR decoding
must maintain many prefixes to avoid premature commitment. Diffusion-style revision offers
a different degree of freedom: you keep a single configuration but revisit it multiple times.
Constraints can therefore act repeatedly, shaping the configuration toward feasibility without
requiring large beams.

6.4 Blocks as a middle ground between AR and fully-parallel updates

Block diffusion [Arriola et al., 2025] formalizes a continuum between AR generation and diffusion
by controlling the block size updated per step. When the block is of size one and chosen as the
next unfilled position, the procedure resembles AR sampling. When blocks cover many positions,
the procedure resembles masked diffusion with parallel fill.

Block updates are particularly well-matched to constraints that have local structural scope.
For instance, a grammar constraint often couples a short span around a delimiter, and a lexical
constraint may couple a short phrase. Updating that span as a block can be more stable than
updating tokens independently because it respects the coupled nature of the constraint. This is
the same intuition behind structured prediction: coupled decisions are better handled jointly
than via independent marginals.

6.5 Argmax flows and categorical diffusion variants

Beyond D3PM and masked diffusion, categorical diffusion has other parameterizations that
emphasize different sampling primitives. Multinomial diffusion and argmax flows [Hoogeboom
et al., 2021] view the reverse process as operating on categorical distributions that are later
mapped to discrete tokens by an argmax-type operation. While the technical details differ,
the constrained-aware relevance is consistent: many of these variants expose a distributional
intermediate representation at each step. Once we have that distributional representation, we can
insert feasibility restoration operators, either as admissible-set masking or as simplex projections,
before sampling a discrete token.

This perspective is useful for the lab: students can work at the level of logits and simplex
operations, even if the underlying paper uses a different formalism for categorical diffusion.

6.6 Practical knobs that interact with constraints

Three practical design choices often matter for constrained diffusion in discrete spaces.
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First, the noise schedule (or masking schedule) controls how quickly the process commits to
discrete tokens. A schedule that commits too fast tends to freeze constraint violations, while a
schedule that commits too slowly can waste compute by repeatedly revisiting unconstrained
regions. Constraint-aware schedules often become aggressive only after the constraint state
suggests that global feasibility is within reach.

Second, the sampling temperature and related smoothing choices determine how exploratory
the chain is. Higher exploration can help escape local traps, but it also increases the rate
at which feasibility is broken and must be repaired. In constrained settings, it is common to
combine exploration early with stricter feasibility restoration late.

Third, the update policy (single-site, subset, block) interacts with the constraint checker. If
the checker can localize violations, then targeted updates become a direct method for allocating
the reverse steps to the most informative repairs. This is one of the most important algorithmic
reasons that diffusion-style iterative refinement is attractive for discrete constraints.

These knobs will be important in the lab phase because they determine the computational
cost of constraint satisfaction and the quality-validity tradeoff observed in practice.

7 Constraint injection mechanisms for discrete diffusion

We now develop three mechanisms for enforcing constraints within discrete diffusion sampling.
The goal is to keep the mechanisms algorithmic and modular, mirroring the explicit insertion
points we emphasized in Lectures 4, 6, and 7.

7.1 Mechanism (i): constrained unmasking as a control policy

In masked diffusion, a step consists of selecting which masked positions to reveal (or which
positions to resample). This selection is itself a policy. In unconstrained sampling the policy
is typically fixed (uniform random, schedule-based, or entropy-based). In constrained-aware
sampling, the policy can be adapted to the constraint state.

Let mt ⊆ {1, . . . , T} denote the set of positions that will be updated at step t. We can view
mt as the action of a controller:

mt ∼ πunmask(· | yt, σt), (18)

where σt summarizes constraint progress (for example, an automaton state, a set of unsatisfied
lexical items, or a parser configuration).

The key idea is that constraints often suggest where to allocate modeling capacity. If a
constraint requires inserting a specific phrase, the policy should focus updates near plausible
insertion sites. If a grammar constraint is violated by the current partial structure, the policy
should prioritize positions that can repair the violation. This resembles resource allocation in
constrained beam search (Lecture 4), except the resource is “which positions to commit now”
rather than “which prefixes to keep alive”.

Example 1 (Lexical constraints as unmasking control). Suppose the output must include a
required phrase, such as a chemical functional group name or a specific field in a JSON object.
Maintain a constraint state σt that tracks whether the phrase has been completed. If not, identify
a window of positions where the phrase can be inserted and prioritize those positions in mt. In
practice, this can be implemented by (i) reserving a contiguous masked span for the phrase and
(ii) unmasking it with a shorter schedule than the rest. This biases sampling toward satisfying
the hard requirement early, reducing the risk that later steps cannot accommodate it.

Remark 2 (Why this is “constraints without duality”). The unmasking policy changes which
variables are updated, not the model objective. It is a control knob that can enforce hard
constraints by preserving degrees of freedom until constraint-critical content is inserted, a purely
algorithmic mechanism that does not require Lagrange multipliers or dual updates.
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7.2 Mechanism (ii): constrained decoding on intermediate representations

Even though the underlying model is not AR, the reverse step typically produces per-position
distributions (logits) over tokens. This yields an intermediate decoding problem: decide which
token to assign to each updated position, given the current corrupted context.

The simplest constraint insertion is to reuse the constrained decoding tools of Lecture 4
locally. Consider a hard constraint represented by an automaton or grammar. At time t, we
have a partially specified sequence yt with masked positions. We can maintain a constraint state
σt that depends on the visible tokens and is updated as we fill masked positions.

Operationally, for each position i ∈ mt we obtain a distribution pθ,t,i(·) ∈ ∆(V) and then
apply a constraint mask:

p̃θ,t,i(v) ∝ pθ,t,i(v)1{v ∈ A(σt, i)}, (19)

where A(σt, i) is the set of tokens admissible at position i given the current constraint state. This
is the direct analogue of automaton masking in Lecture 4, except it is applied at intermediate
steps and potentially at multiple positions in parallel.

The nontrivial part is that constraints couple positions. Two standard patterns are:

Sequential within-step filling. Even if mt includes many positions, fill them one by one in
an order, updating σt after each fill, using (19). This recovers constrained decoding behavior
while preserving the diffusion outer loop.

Beam or search over the block. For a block mt (as in block diffusion), treat the block filling
as a small structured prediction problem and run a constrained search within the block (beam
search, dynamic beam allocation, or a grammar parser) while keeping the outside positions fixed.
This is attractive when constraints couple a local contiguous region.

Example 2 (JSON schema as intermediate decoding). Suppose we must generate a JSON object
with required keys and well-formed syntax. Maintain a parser state σt for the JSON grammar (or
a compiled token-level automaton). At a diffusion step, when filling a masked position that lies
inside the JSON structure, compute admissible tokens A(σt, i) from the parser, mask logits by
(19), then sample or select. The diffusion model supplies semantic plausibility (values, wording)
while the parser guarantees syntactic validity.

This mechanism is the discrete analogue of “projection after each reverse update” in Lecture
7: it enforces feasibility at each step, but feasibility is checked in a symbolic representation
rather than as a Euclidean distance.

7.3 Mechanism (iii): projection onto probability simplices with constraints

The previous mechanism enforces constraints by masking and renormalizing. This is equivalent
to a projection onto a face of the simplex (zeroing forbidden tokens). More generally, we can
enforce constraints that are naturally expressed as linear or convex constraints on distributions
by solving a projection or proximal problem, using the primitives from Lecture 6.

Consider a per-position distribution p ∈ ∆(V) produced by the model (for some position i at
some time t). Let C∆ ⊆ ∆(V) be a convex constraint set over distributions, for example

C∆ = {p ∈ ∆(V) : p(v) = 0 ∀v ∈ F ,
∑
v∈S

p(v) ≥ ρ}, (20)

where F is a set of forbidden tokens and S is a set of required tokens that must receive at least
ρ total probability mass.

Given a base distribution p, define a feasibility restoration operator

R(p) := ProjC∆(p) = argmin
q∈C∆

∥q − p∥22. (21)
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This is a convex problem. The resulting q = R(p) is the closest distribution that satisfies the
constraints, and it can be used as the sampling distribution for that position.

Two observations connect this to the course’s earlier material.
First, (21) is an explicit projection, exactly as in Lecture 6, except the ambient space is

the simplex. Many such projections admit fast algorithms (sorting-based simplex projection;
projections with box constraints; projections with a small number of linear inequalities).

Second, projection can be used even for constraints that are not hard feasibility in token
space but rather risk control in probability space: one can ensure that the probability of unsafe
tokens is bounded, or that the model maintains a minimum probability mass on “escape” options
that can complete a grammar.

Example 3 (Soft lexical pressure via simplex constraints). Suppose a phrase must appear
somewhere, but we treat it as a soft constraint. In a diffusion model, we can allocate a set of
candidate positions where the phrase could begin. For each such position, define S as the set of
tokens that are valid phrase starters and enforce

∑
v∈S p(v) ≥ ρt for a time-dependent schedule

ρt that increases as t decreases. This can be implemented by projecting per-position distributions
using (21). Unlike hard masking, this preserves flexibility and can be tuned by ρt.

Remark 3 (Relation to guidance for discrete diffusion). Guidance in continuous diffusion adds
an extra score term to shift probabilities. Simplex projection can be seen as a complementary
mechanism: rather than modifying logits by additive energies, it enforces feasibility by moving
the resulting distribution to a constrained set. In practice, one often combines both: add an
energy shaping term to logits (soft constraint) and then project to enforce hard safety or syntax
constraints.

8 A generic sampler with explicit constraint insertion points

We now write a generic discrete diffusion sampler that makes the insertion points explicit. It
mirrors Algorithm 1 in Lecture 7, but replaces “mean + Gaussian noise” with “categorical
sampling with optional masked positions”, and replaces Euclidean projection with symbolic
masking or simplex projection.

Algorithm 1 Discrete diffusion sampling with constraint insertions (generic template)

Require: time horizon T ; reverse model pθ(· | yt, t, x); unmask policy πunmask; constraint state
update rule; restoration operator R (masking or simplex projection); optional guidance
operator G.

Ensure: sample y0.
1: Initialize yT ∼ qT (e.g., all [MASK] or a high-noise categorical sample); initialize constraint

state σT .
2: for t = T, T − 1, . . . , 1 do
3: Choose update set mt ∼ πunmask(· | yt, σt).
4: Compute model distributions {pθ,t,i(·)}i∈mt .
5: Optionally apply guidance: pθ,t,i ← G(pθ,t,i, yt, σt, t).
6: Restore feasibility in distribution space: qt,i ← R(pθ,t,i;σt, i) for each i ∈ mt.
7: Sample or select tokens for i ∈ mt from qt,i to produce yt−1 (positions not in mt copy

from yt).
8: Update constraint state σt−1 from (yt−1, σt).
9: end for

10: return y0.

Algorithm 1 clarifies how the three mechanisms fit together. Mechanism (i) is πunmask.
Mechanism (ii) is R implemented as symbolic admissible-set masking, and mechanism (iii) is

11
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R implemented as a projection/prox step on simplices. This template also anticipates the
constrained discrete diffusion approach in Cardei et al. [2025].

9 Worked examples

We close with three examples that connect directly to the constraint taxonomy and insertion
patterns in earlier lectures.

9.1 Example 1: lexically constrained generation beyond beam search

Lecture 4 presented dynamic beam allocation [Post and Vilar, 2018] for enforcing lexical
constraints in AR generation. Discrete diffusion provides an alternative: rather than allocating
beam budget across constraint states, we allocate update budget across positions and enforce
lexical progress through unmasking control and intermediate constrained decoding.

If the required phrase is a short sequence of tokens, we can reserve a masked span and treat
its filling as a block update, running a small constrained search inside the block while the rest
of the sequence is held fixed. This makes constraint satisfaction robust even when the base
model assigns low probability to completions that contain the phrase, because we prevent early
commitment elsewhere from consuming the length budget.

9.2 Example 2: grammar constraints for code or structured text

For code or formal languages, constraints are often context-free (balanced delimiters, typing).
AR constrained decoding enforces these constraints locally but is still sensitive to early mistakes.
In masked diffusion, the model can revise multiple positions and can fill structural tokens
(brackets, commas, keywords) before details. A practical policy is to unmask structural tokens
early, updating the parser state, and unmask identifiers and literals later. This is a discrete
analogue of “coarse-to-fine” constraint satisfaction.

9.3 Example 3: SMILES validity and domain rules

SMILES strings must satisfy syntax constraints and chemical validity constraints. Grammar
constraints can ensure syntactic validity, while chemical validity may require additional checks
(valency, ring closure consistency). In diffusion sampling, one can (i) enforce SMILES grammar
by masking logits with an automaton; (ii) incorporate a chemical validity checker as a repair
operator that suggests which positions to resample (unmask policy); and (iii) enforce simple
safety constraints in simplex space by banning problematic tokens or motifs as forbidden sets F
in (20). This combination produces a modular constrained-generation loop with clear insertion
points for domain tools.

10 Discussion: guidance, risk, and evaluation in discrete diffu-
sion

Several guidance mechanisms proposed for discrete diffusion can be understood as modifying
logits (or ratios) by additive terms derived from a discriminator, a reward model, or a verifier,
in the same spirit as guidance in Lecture 7 but adapted to categorical distributions [Schiff et al.,
2025]. In constrained settings, it is often safer to treat guidance as soft and to pair it with hard
feasibility restoration (symbolic masking or simplex projection), because strong guidance can
still produce fluent but invalid sequences if it is not tied to an executable constraint.

Evaluation in discrete constrained generation should separate three axes. Validity measures
whether hard constraints are satisfied (grammar acceptance, schema compliance, presence of

12
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required items). Violation magnitude measures how badly constraints fail when they fail (useful
for soft constraints and partial validity). Quality and diversity should be measured in a task-
appropriate way (human evaluation, reference-based metrics when appropriate, or domain scores),
but, as emphasized in Lecture 1, these are not substitutes for validity.

11 Summary and looking ahead

Discrete diffusion models provide an iterative, joint-generation interface for token sequences,
complementing autoregressive decoding. D3PM formalizes categorical noising and denoising
via Markov chains with tractable marginals, while MDLM emphasizes masking as a practical
corruption mechanism. Ratio-based viewpoints such as SEDD offer a discrete analogue of scores
and connect naturally to guidance as additive preference shaping.

From the constrained-aware perspective, the central benefit is algorithmic: the reverse process
offers explicit insertion points. Constraints can act as (i) constrained unmasking policies that
allocate update budget to constraint-critical positions, (ii) constrained decoding procedures
applied to intermediate distributions using automata or grammars, and (iii) simplex projections
that enforce probabilistic constraints directly on the model’s output distributions. These
mechanisms set up the lab phase on discrete constraints while staying within the optimization
primitives of Lecture 6 and the iterative control pattern of Lectures 7–8, without invoking duality
yet.
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