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Image classification

Machine Learning: The Success Story

Reinforcement Learning

Machine translation
The next slides use the material  

from https://adversarial-ml-tutorial.org/ by Zico Kolter and Aleksander Madry

https://adversarial-ml-tutorial.org/


3

Is ML truly ready for 
real-world deployment?
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Can We Truly Rely on ML?
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But what do these results really mean?

ImageNet: An ML Home Run
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A Limitation of the (Supervised) ML Framework

Measure of performance:
Fraction of mistakes during testing

But: In reality, the distributions 
we use ML on are NOT the ones 

we train it on

Training Inference
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Training Inference

Measure of performance:
Fraction of mistakes during testing

But: In reality, the distributions 
we use ML on are NOT the ones 

we train it on

What can go wrong?

=
A Limitation of the (Supervised) ML Framework
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ML Predictions Are (Mostly) Accurate but Brittle
“pig” (91%) “airliner” (99%)

+ 0.005 x =

noise (NOT random)

[Szegedy Zaremba Sutskever Bruna Erhan Goodfellow Fergus 2013]
[Biggio Corona Maiorca Nelson Srndic Laskov Giacinto Roli 2013]

But also: [Dalvi Domingos Mausam Sanghai Verma 2004][Lowd Meek 2005]
[Globerson Roweis 2006][Kolcz Teo 2009][Barreno Nelson Rubinstein Joseph Tygar 2010]

[Biggio Fumera Roli 2010][Biggio Fumera Roli 2014][Srndic Laskov 2013]
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ML Predictions Are (Mostly) Accurate but Brittle

[Athalye Engstrom Ilyas Kwok 2017]

[Kurakin Goodfellow Bengio 2017]

[Eykholt Evtimov Fernandes Li Rahmati Xiao Prakash Kohno Song 2017]

[Sharif Bhagavatula Bauer Reiter 2016] 
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ML Predictions Are (Mostly) Accurate but Brittle

[Fawzi Frossard 2015]
[Engstrom Tran Tsipras Schmidt M 2018]: 
Rotation + Translation suffices to fool
state-of-the-art vision models

Should we be worried?

→ Data augmentation does not
seem to help here either

So: Brittleness of ML is a thing
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Why Is This Brittleness of ML a Problem?
→ Security

[Sharif Bhagavatula Bauer Reiter 2016]: 
Glasses that fool face recognition

[Carlini Wagner 2018]: 
Voice commands that are 
unintelligible to humans



13

Why Is This Brittleness of ML a Problem?

→ Security

→ Safety

https://www.youtube.com/watch?v=TIUU1xNqI8w

https://www.youtube.com/watch?v=_1MHGUC_BzQ
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Why Is This Brittleness of ML a Problem?
→ Security
→ Safety
→ ML Alignment

Need to understand the 
“failure modes” of ML
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Adversarial Examples

Training Inference

Is That It?

Data poisoning

→ Can’t afford to be too picky about  
where we get the training data from

(Deep) ML is ”data hungry”

What can go wrong?
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Data Poisoning
Goal: Maintain training accuracy but hamper generalization
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Data Poisoning
Goal: Maintain training accuracy but hamper generalization

→ Fundamental problem 
in “classic” ML (robust statistics)

→ But: seems less so in deep learning
→ Reason: Memorization?

Is that it?

classification of specific inputs
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Data Poisoning
Goal: Maintain training accuracy but hamper generalization

[Koh Liang 2017]: Can manipulate many
predictions with a single “poisoned” input

“van” “dog”

But: This gets (much) worse

[Gu Dolan-Gavitt Garg 2017][Turner Tsipras M 2018]: 
Can plant an undetectable backdoor that 

gives an almost total control over the model

(To learn more about backdoor attacks:
See poster #148 on Wed [Tran Li M 2018])

classification of specific inputs
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Training Inference

Is That It?

Deployment

In
pu

t !

Output

Parameters "

Google Cloud Vision API

Microsoft Azure (Language Services)
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Training Inference

Is That It?

Deployment Black box attacks

Does limited access 
give security?

In short: No

In
pu

t !

Output

Parameters "

Data

Predictions
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Training Inference

Is That It?

Deployment Black box attacks

Does limited access 
give security?

In
pu

t !

Output

Parameters "

Data

Predictions

Model stealing: “Reverse 
engineer“ the model
[Tramer Zhang Juels Reiter Ristenpart 2016]

Black box attacks: Construct
adv. examples from queries
[Chen Zhang Sharma Yi Hsieh 2017][Bhagoji He Li 
Song 2017][Ilyas Engstrom Athalye Lin 2017]
[Brendel Rauber Bethge 2017][Cheng Le Chen Yi 
Zhang Hsieh 2018][Ilyas Engstrom M 2018] For more: See my talk on Friday
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Are we doomed?

No: But we need to re-think how we do ML
(Think: adversarial aspects = stress-testing our solutions)

(Is ML inherently not reliable?)
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Towards Adversarially Robust Models
“pig”

“pig” (91%) “airliner” (99%)

+ 0.005 x =
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!"#$ %&'' $, ) , *
Goal of training:

Differentiable

In
pu

t +

Output

Parameters ,

Where Do Adversarial Examples Come From?

Input Correct LabelModel Parameters

Can use gradient descent 
method to find good $

To get an adv. example
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!"#$ %&'' (, # + $, +
Goal of training:

Differentiable

In
pu

t ,

Output

Parameters -

Where Do Adversarial Examples Come From?

Can use gradient descent 
method to find bad $

To get an adv. example

Which $ are allowed?

Examples: $ that is small wrt

• ℓ/-norm

• Rotation and/or translation

• VGG feature perturbation

• (add the perturbation you need here)

This is an important question
(that we put aside)

Still: We have to confront
(small) ℓ/-norm perturbations 
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Towards ML Models that Are Adv. Robust
[M Makelov Schmidt Tsipras Vladu 2018]

Key observation: Lack of adv. robustness is NOT at odds with 
what we currently want our ML models to achieve

!(#,%)~( [*+,, -, ., / ]Standard generalization:

But: Adversarial noise is a “needle in a haystack”

Adversarially robust
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Towards ML Models that Are Adv. Robust
[M Makelov Schmidt Tsipras Vladu 2018]

Key observation: Lack of adv. robustness is NOT at odds with 
what we currently want our ML models to achieve

Standard generalization: !(#,%)~( [*+,-∈/
0122 3, , + -, 5 ]

Adversarially robust

But: Adversarial noise is a “needle in a haystack”
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ML via Adversarial Robustness Lens
Overarching question:

How does adv. robust ML differ from “standard” ML?

!(#,%)~( [*+,, -, ., / ]

!(#,%)~( [12.3∈5
*+,, -, . + 3, / ]

vs

(This goes beyond deep learning)
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Do Robust Deep Networks Overfit?
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Do Robust Deep Networks Overfit?

(large) 
generalization gap
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Adv Evaluation  Adv Trainining

Regularization does not 
seem to help either

What’s going on?
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Does Being Robust Help “Standard” Generalization?

Data augmentation: An effective technique 
to improve “standard” generalization

(since we train on the ”most confusing” version of the training set) 

Does adversarial training always improve 
“standard” generalization?

Adversarial training
=

An “ultimate” version of data augmentation?
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Does Being Robust Help “Standard” Generalization?
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Does Being Robust Help “Standard” Generalization?
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Where is this
(consistent) gap 
coming from? 

“standard”
performance gap
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Does Being Robust Help “Standard” Generalization?
Theorem [Tsipras Santurkar Engstrom Turner M 2018]:

No “free lunch”: can exist a trade-off between accuracy and robustness

Basic intuition:  
→ In standard training, all correlation is good correlation
→ If we want robustness, must avoid weakly correlated features

…

aggregates to a very accurate (but non-robust!) “meta-feature”

Weak correlation

Strong (but not perfect) 
correlation

Standard training: use all of 
features, maximize accuracy

Adversarial training: use only single robust 
feature (at the expense of accuracy) 
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Adversarial Robustness is Not Free
→ Optimization during training more difficult

and models need to be larger

+"

−"

→ More training data might be required
[Schmidt Santurkar Tsipras Talwar M 2018]

→ Might need to lose on “standard” measures of performance
[Tsipras Santurkar Engstrom Turner M 2018] (Also see: [Bubeck Price Razenshteyn 2018])
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But There Are (Unexpected?) Benefits Too
[Tsipras Santurkar Engstrom Turner M 2018]

Models become more semantically meaningful

Input
Gradient of 

standard model
Gradient of 

adv. robust model



40

Towards (Adversarially) Robust ML

→ Algorithms: Faster robust training + verification [Xiao Tjeng Shafiullah M 2018],

smaller models, new architectures?

→ Theory: (Better) adv. robust generalization bounds, 

new regularization techniques

→ Data: New datasets and more comprehensive set of perturbations

(robust-ml.org)

Major need: Embracing more of a worst-case mindset 

→ Adaptive evaluation methodology + scaling up verification
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• Ethical Implications: How does improving adversarial 
robustness in AI models intersect with ethical 
considerations? For instance, does making a model more 
robust also make it more or less likely to propagate biases 
or misinformation?


• Trade-offs: There are inherent trade-offs between 
adversarial robustness, model performance, and 
computational efficiency. How do these trade-offs impact 
the ethical deployment of these models?


• Transparency and Explainability: How can transparency 
and explainability in AI models help in understanding and 
mitigating adversarial attacks? Is there a tension between 
the complexity required for robustness and the need for 
understandable models?


• Fairness and Equity in Robust AI Systems: In what ways 
might efforts to increase adversarial robustness impact the 
fairness and equity of AI systems? How can we ensure 
that these efforts do not exacerbate existing inequalities?


• LLMs: How do adversarial attacks on large language 
models differ from those on other types of machine 
learning models, and what unique challenges do they 
present?


• Responsibility and Accountability: Who should be held 
accountable for failures in AI systems due to adversarial 
attacks – the developers, the users, or the AI itself?


• Global Perspectives on AI Robustness: How do 
perspectives on AI robustness and ethics vary across 
different cultures and countries? What can be learned from 
these diverse viewpoints?

49

Discussion



• **Ethical Implications of Adversarial Robustness**: How does improving adversarial 
robustness in AI models intersect with ethical considerations? For instance, does making a 
model more robust also make it more or less likely to propagate biases or misinformation?


• 3. **Trade-offs in Model Robustness**: Discuss the potential trade-offs between adversarial 
robustness, model performance, and computational efficiency. How do these trade-offs 
impact the ethical deployment of these models?


• 4. **Transparency and Explainability**: How can transparency and explainability in AI 
models help in understanding and mitigating adversarial attacks? Is there a tension 
between the complexity required for robustness and the need for understandable models?


• 5. **The Role of Differential Privacy**: How does differential privacy contribute to or conflict 
with the goals of adversarial robustness in AI systems, especially in LLMs?


• 6. **Fairness and Equity in Robust AI Systems**: In what ways might efforts to increase 
adversarial robustness impact the fairness and equity of AI systems? How can we ensure 
that these efforts do not exacerbate existing inequalities?


• 7. **Regulatory and Policy Considerations**: What are the policy and regulatory 
implications of adversarial attacks on AI systems? How should governments and 
international bodies address these challenges?


• 1. **The Nature of Adversarial Attacks in LLMs**: How do adversarial attacks on large 
language models differ from those on other types of machine learning models, and what 
unique challenges do they present?


• 8. **Future of Adversarial Machine Learning**: What are the emerging trends and potential 
future directions in adversarial machine learning, and how might they impact the ethical 
use of AI?


• 9. **Role of Human Oversight**: How can human oversight be effectively integrated into the 
development and deployment of robust AI systems to ensure ethical outcomes?


• 10. **Case Studies of Adversarial Attacks**: Discuss specific instances of adversarial 
attacks on LLMs. What were the consequences, and what lessons can be learned from 
these cases in terms of ethical AI development?


• 11. **Responsibility and Accountability**: Who should be held accountable for failures in AI 
systems due to adversarial attacks – the developers, the users, or the AI itself?


• 12. **Global Perspectives on AI Robustness**: How do perspectives on AI robustness and 
ethics vary across different cultures and countries? What can be learned from these 
diverse viewpoints?
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Discussion



Important This Week

• Check which group are you (1-6)


• Check when you’ll be presenting/blogging.


•
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Important This Week
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https://shorturl.at/jtuF7 
Check column M

https://shorturl.at/jtuF7
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