Responsible Al: Seminar on Fairness, Safety, Privacy and more

nandofioretto@gmail.com

@nandofioretto

Discussion

- Ethical Implications: How does improving adversarial robustness in AI models intersect with ethical considerations? For instance, does making a model more robust also make it more or less likely to propagate biases or misinformation?
- **Trade-offs**: There are inherent trade-offs between adversarial robustness, model performance, and computational efficiency. How do these trade-offs impact the ethical deployment of these models?
- Transparency and Explainability: How can transparency and explainability in Al models help in understanding and mitigating adversarial attacks? Is there a tension between the complexity required for robustness and the need for understandable models?

- Fairness and Equity in Robust Al Systems: In what ways might efforts to increase adversarial robustness impact the fairness and equity of Al systems? How can we ensure that these efforts do not exacerbate existing inequalities?
- **LLMs**: How do adversarial attacks on large language models differ from those on other types of machine learning models, and what unique challenges do they present?
- Responsibility and Accountability: Who should be held accountable for failures in Al systems due to adversarial attacks the developers, the users, or the Al itself?
- Global Perspectives on Al Robustness: How do perspectives on Al robustness and ethics vary across different cultures and countries? What can be learned from these diverse viewpoints?

Foundations and Applications

Part I: Foundation

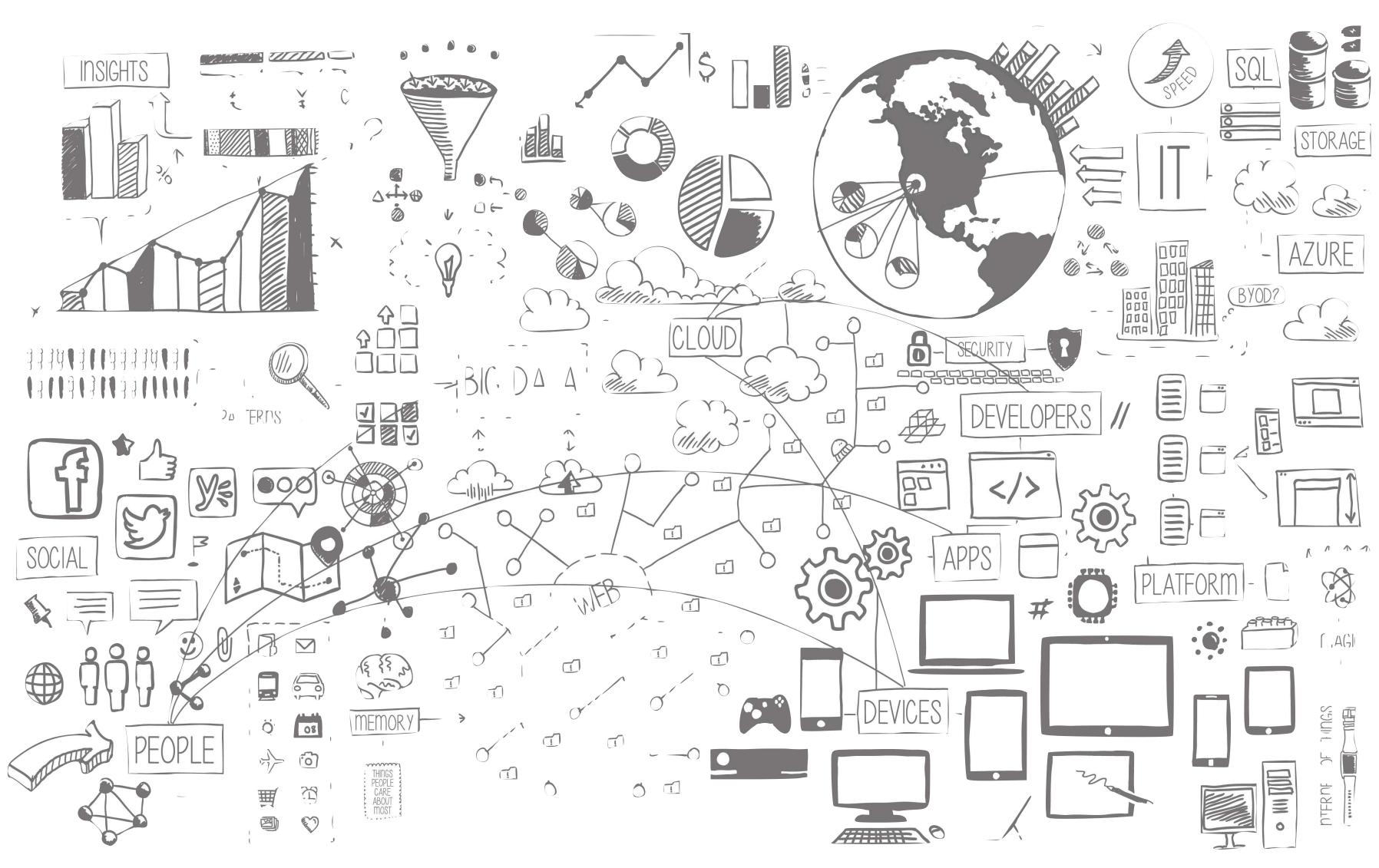
- Privacy and Attack models
- Differential Privacy
- Common algorithms

Part II: DP issues

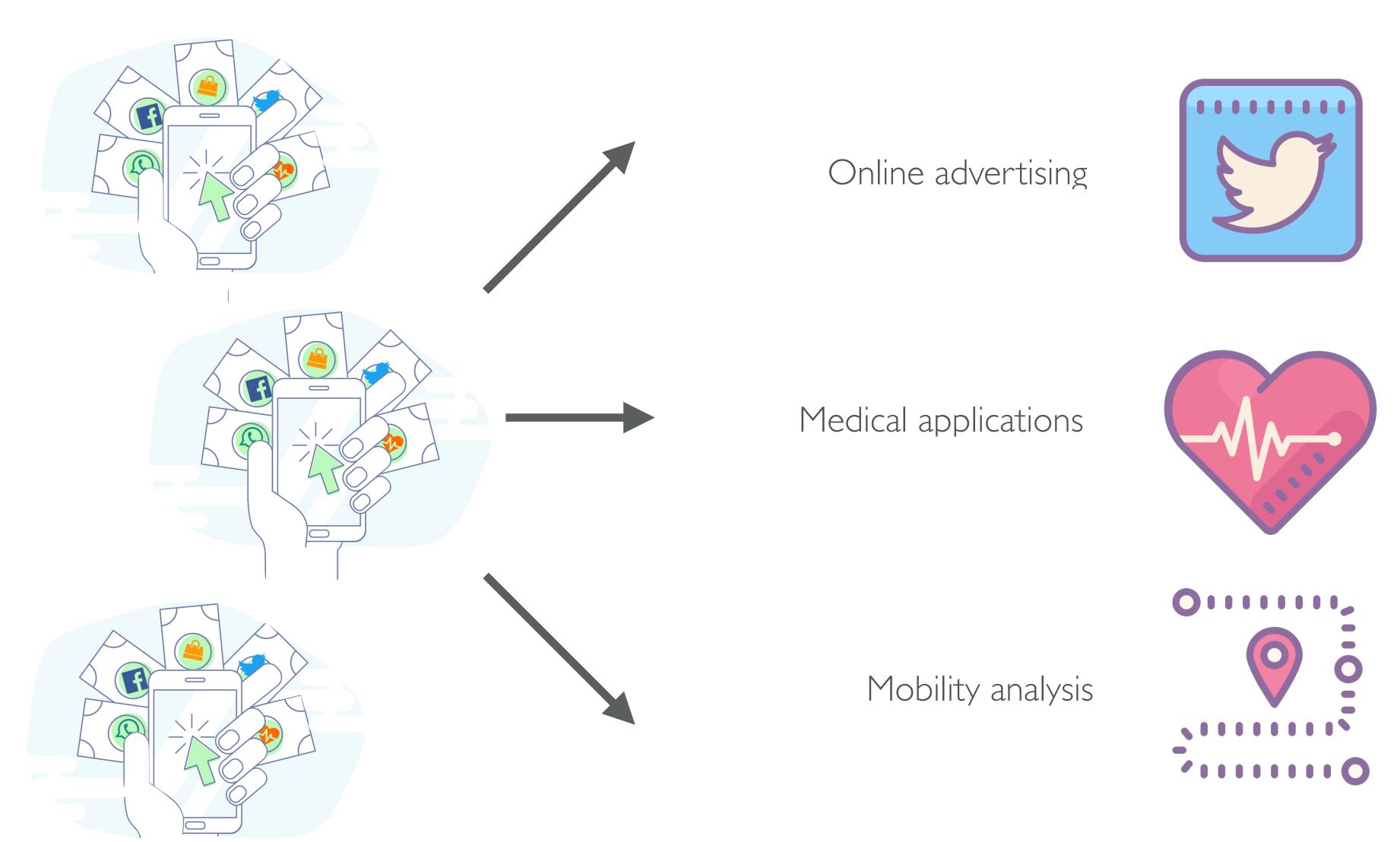
Consistency

Part l: Foundation

We live in a data-driven world

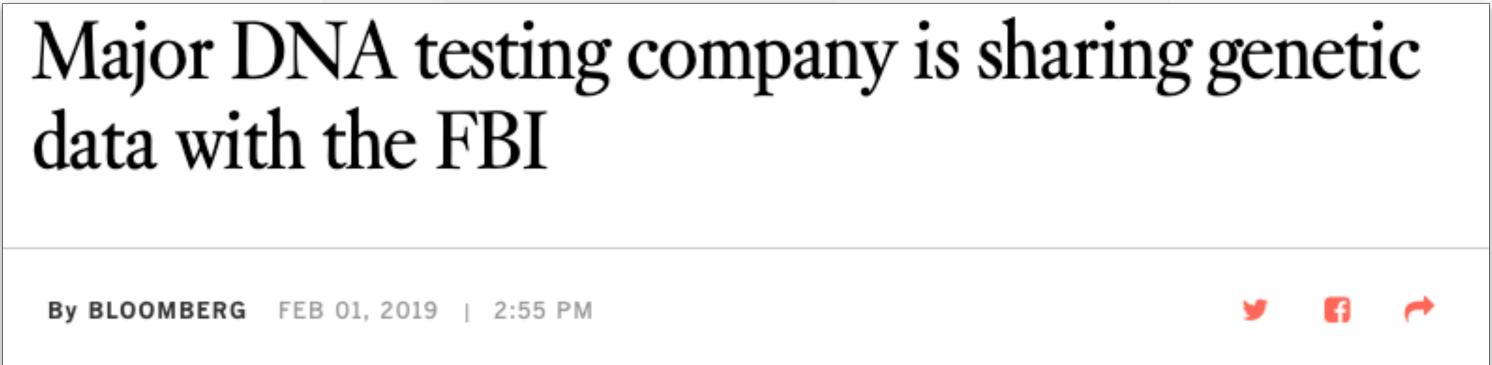


Aggregated Personal Data is Invaluable



Releasing Personal Data can be Harmful Beyond Your Consent

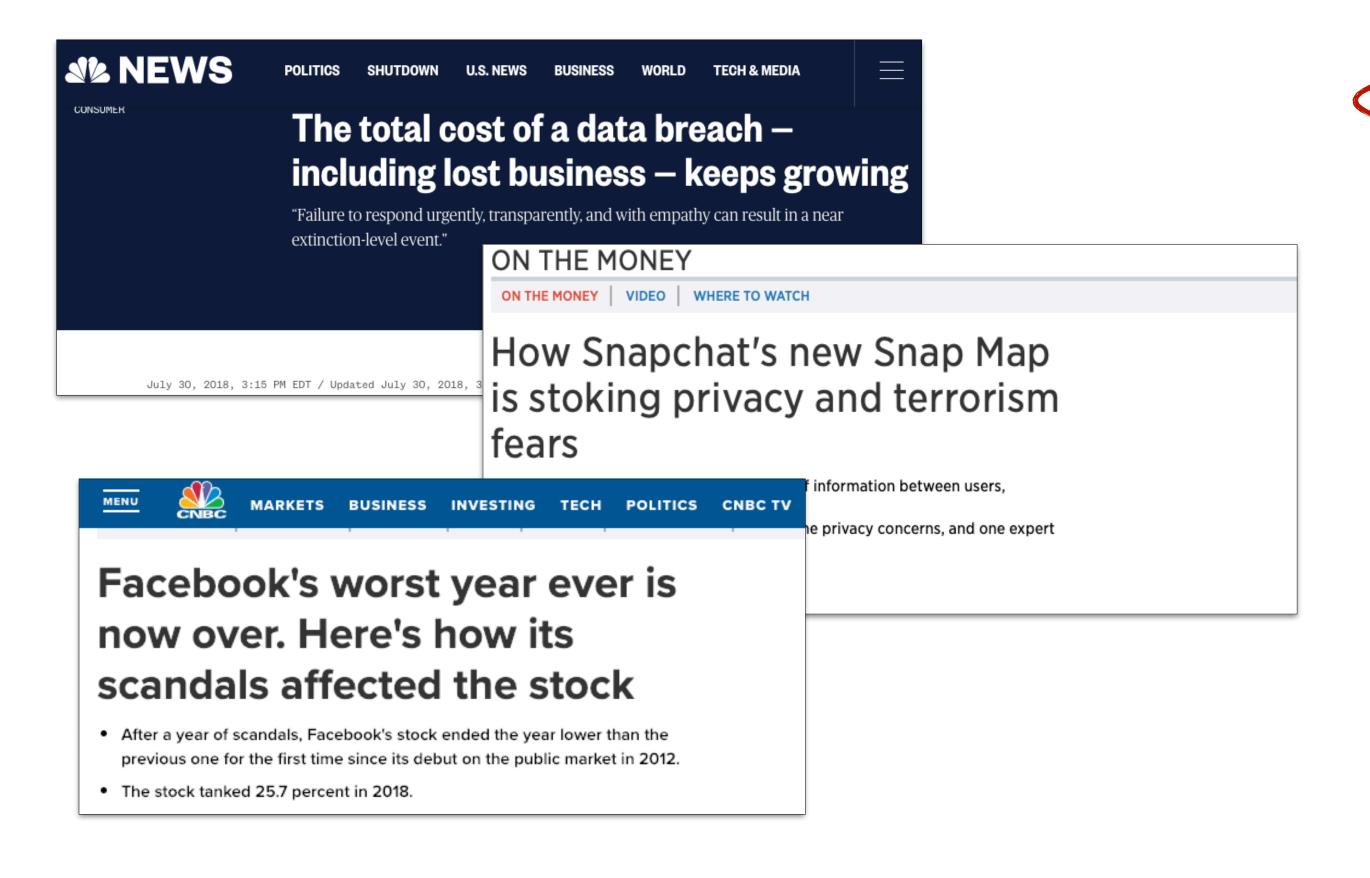
Would your relatives consent?

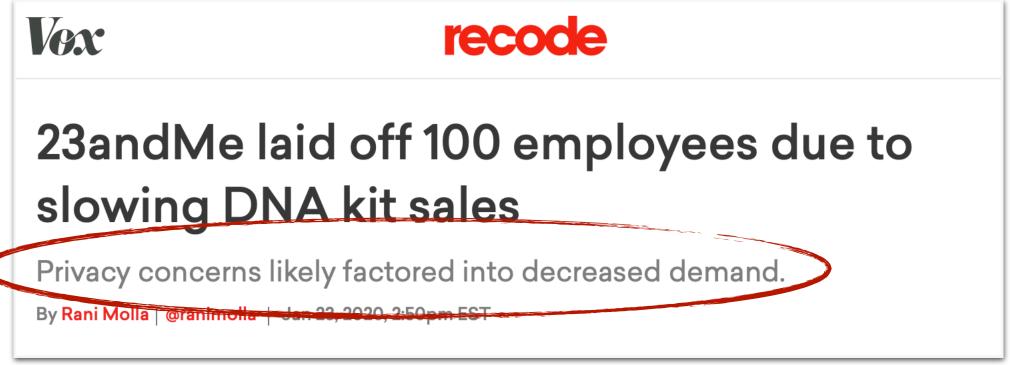


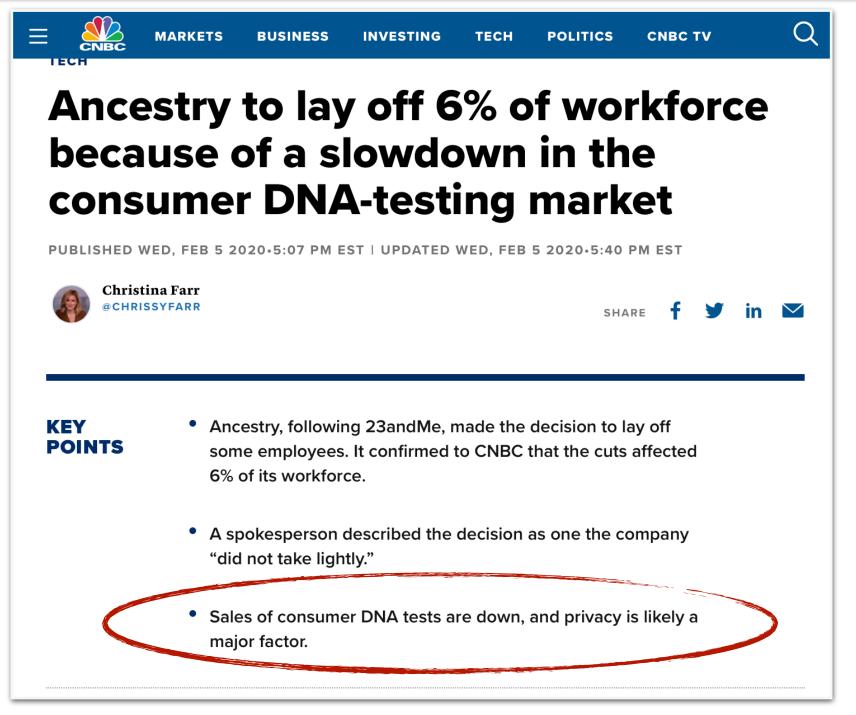
Releasing Personal Data can be Harmful Beyond Your Consent

Data Breaches and Cost of Privacy

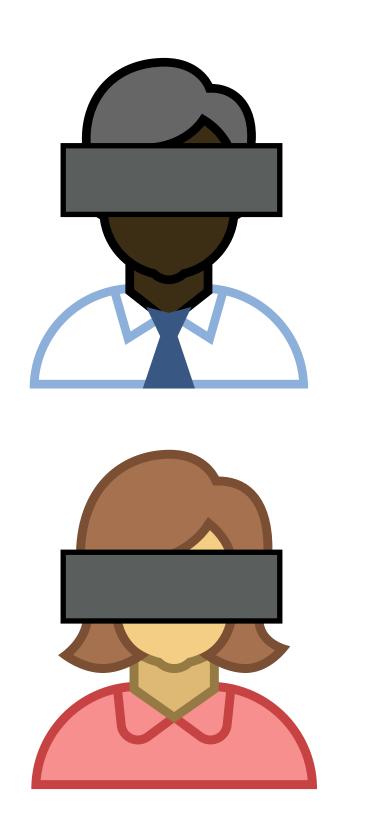
The average global cost of data breaches is \$3.86M (2019) [IBM study]

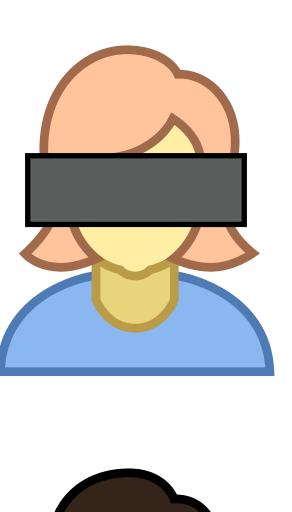


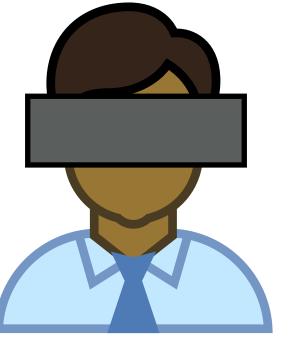


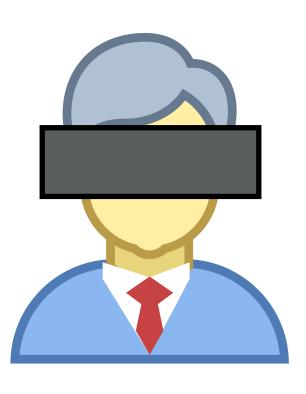


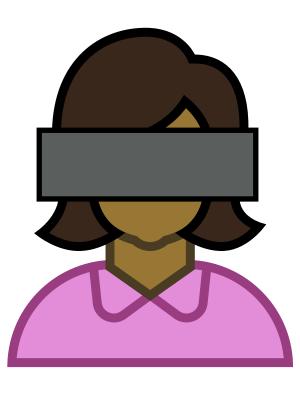
Data Anonymization











How do you keep survey data private?

- The census bureau is supposed to keep the collected information confidential.
- How can you retain privacy while publishing results about the survey?

user	age	gender
Margaret	31	F
Luis	49	M
Maria	26	F
Carl	19	\bowtie
Isabelle	27	F

How do you keep survey data private?

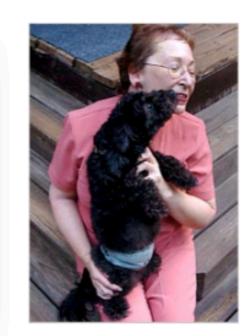
- How can you retain privacy while publishing results about the survey?
- Database Reconstruction Theorem: Every information released contributes to violate the privacy of an individual. The more information it is publicly released the more privacy is violated.

user	age	gender		Avg.: 30.4	
Margaret	31	F		0	
Luis	49	M			
Maria	26	F		Avg.: 34	Male
Carl	19	M			
Isabelle	27	F		Avg.: 28	Female

Anonymization is not Enough

A Face Is Exposed for AOL Searcher No. 4417749

By MICHAEL BARBARO and TOM ZELLER Jr. Published: August 9, 2006



Why 'Anonymous' Data Sometimes Isn't

By Bruce Schneier 2 12.13.07

Last year, Netflix published 10 million movie rankings by 500,000 customers, as part of a challenge for people to come up with better recommendation systems than the one the company was using.

The Scientist » The Nutshell

"Anonymous" Genomes Identified

The names and addresses of people participating in the Personal Genome Project can be easily tracked down despite such data being left off their online profiles.

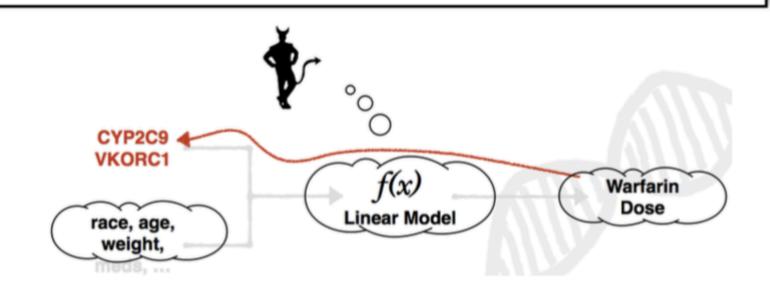
By Dan Cossins | May 3, 2013

Anonymization is not Enough

How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did

TECH | 2/16/2012 @ 11:02AM | 837,678 views

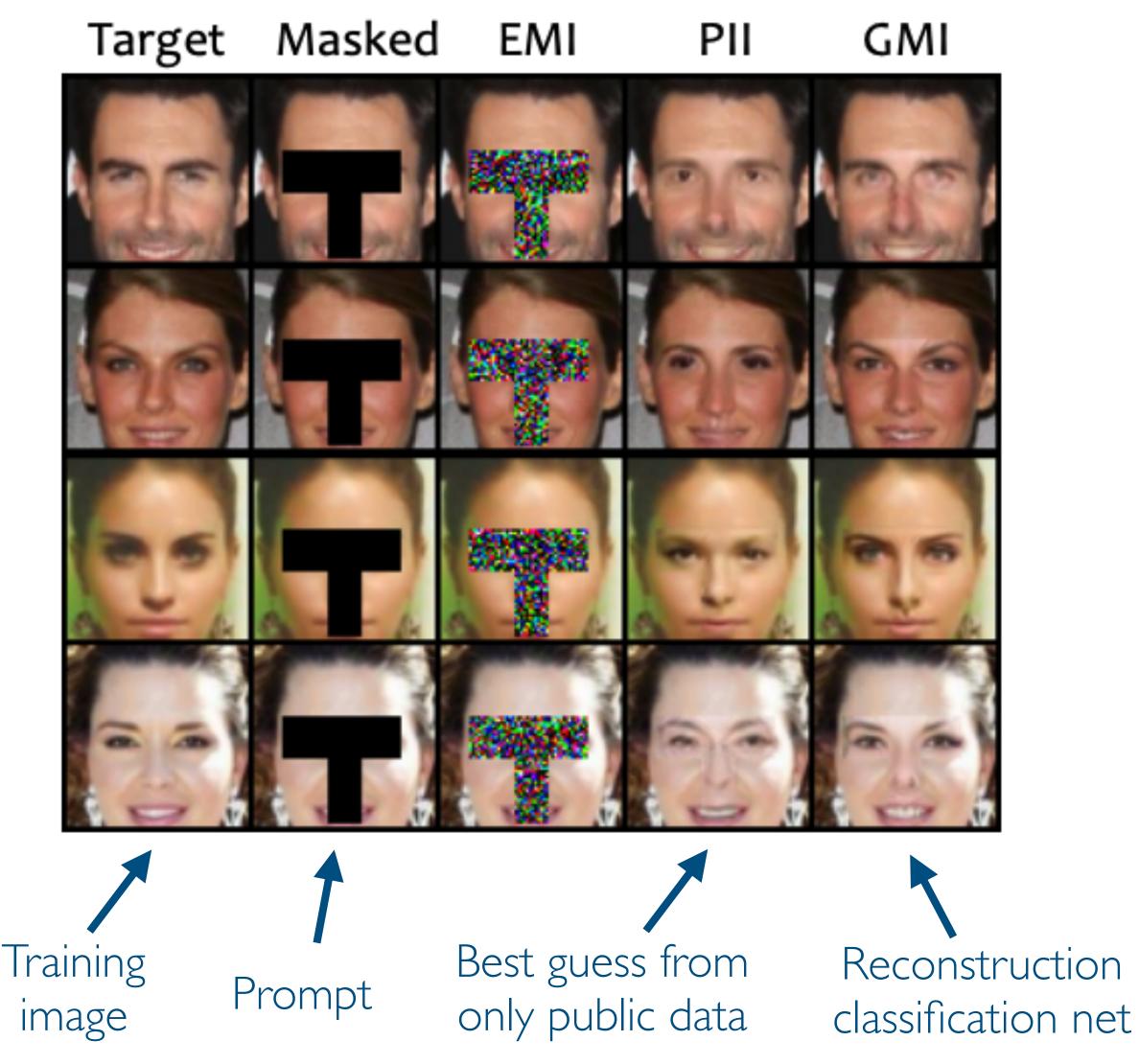
Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing



Model inversion attacks

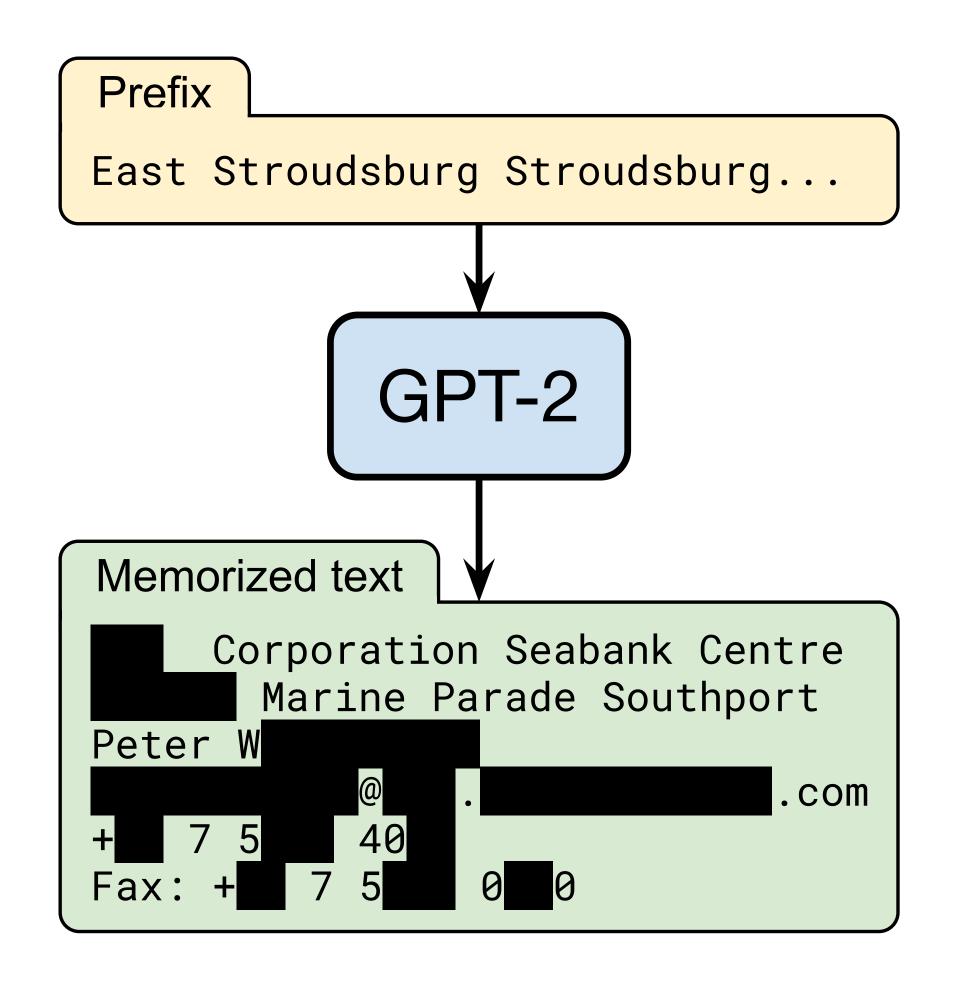
- Even if you don't release the raw data, the weights of a trained network might reveal sensitive information.
- Model inversion: recover information about the training data from the trained model.
- Example from a face recognition dataset, given a classifier trained on this dataset and a generative model trained on an unrelated dataset of publicly available images.

Source: Zhang et al., "The secret revealer: Generative model-inversion attacks against deep neural networks." https://arxiv.org/abs/1911.07135



Extraction attacks

- Language models trained on scrapes of the public Internet.
- Extraction attack: extracts verbatim text sequences from the model's training data.
- Example from a GPT-2 model. Given query access, it extracts an individual person's name, email address, phone number, fax number, and physical address.



Reconstruction attacks

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU census.gov

308,745,548 people in 2010 release which implements some "protection"

Commercial databases

Linkage Attacks — Results from UC Census:

- Census blocks correctly reconstructed in all 6,207,027, inhabited blocks.
- Block, sex, age, race, ethnicity reconstructed:
 - Exactly: 46% of population (142M).
 - Allowing age +/- I year: 71% of population (219M).
- Name, block sex, age, race, ethnicity:
 - Confirmed re-identification: 38% of population.

Needs for guarantees

- It's hard to guess what capabilities attackers will have, especially decades into the future.
 - Analogy with crypto: Cryptosystems today are designed based on what quantum computers might be able to do in 30 years.
 - To defend against unknown capabilities, we need mathematical guarantees.
- Want to guarantee: no individual is directly harmed (e.g. through release of sensitive information) by being part of the database, even if the attacker has tons of data and computation.

Part I: Foundation

Privacy Definitions

Privacy is NOT

Encryption

• Encryption:

- Alice sends a message to Bob s.t. Trudy (the attacker) does not learn the message.
- Bob should get the correct message

• Statistical Dataset Privacy:

- Trudy can access the dataset
 - It must learn aggregate statistics, but
 - Must not learn new info about the individuals in the dataset

Privacy is NOT

Secure multiparty computation

- Secure Multiparty Computation:
- A set of agents, each with private input x_i
- Want to compute a function $f(x_1, ..., x_k)$
- Each agent can learn the true answer, but must not learn any other info than what can be inferred from their private input and the answer.

- Statistical Dataset Privacy:
- The function output must not disclose individual inputs.

What is privacy?

Privacy breach

A private mechanism M(D) that allows an unauthorized party P to learn sensitive information about any individual in D that P could not have learnt with access to M(D)

What is privacy?

The smoking causes cancer case

Is this a privacy breach?

What is privacy?

Privacy Breach (revisited)

A private mechanism M(D) that allows an unauthorized party P to learn sensitive information about any individual x in D that P could not have learnt with access to M(D), if x was not in D

Brief Summary

- Statistical dataset privacy is the problem of releasing aggregate statistics while not disclosing individual records
- The problem is distinct from encryption and secure computation
- Defining privacy is non-trivial:
 - Requirements include resilience to background knowledge, as well as composition and closure under post-processing.

Randomized Response

Early privacy

Randomized response is a survey technique that ensures some level of privacy.

Example: Have you ever dodged your taxes?

- I. Flip a coin.
- 2. If the coin lands Heads, then answer truthfully.
- 3. If it lands Tails, then flip it again.
 - I. If it lands Heads, then answer Yes.
 - 2. If it lands Tails, then answer No.

Probability of responses

	Yes	No
Dodge	3/4	$\overline{1/4}$
No Dodge	1/4	3/4

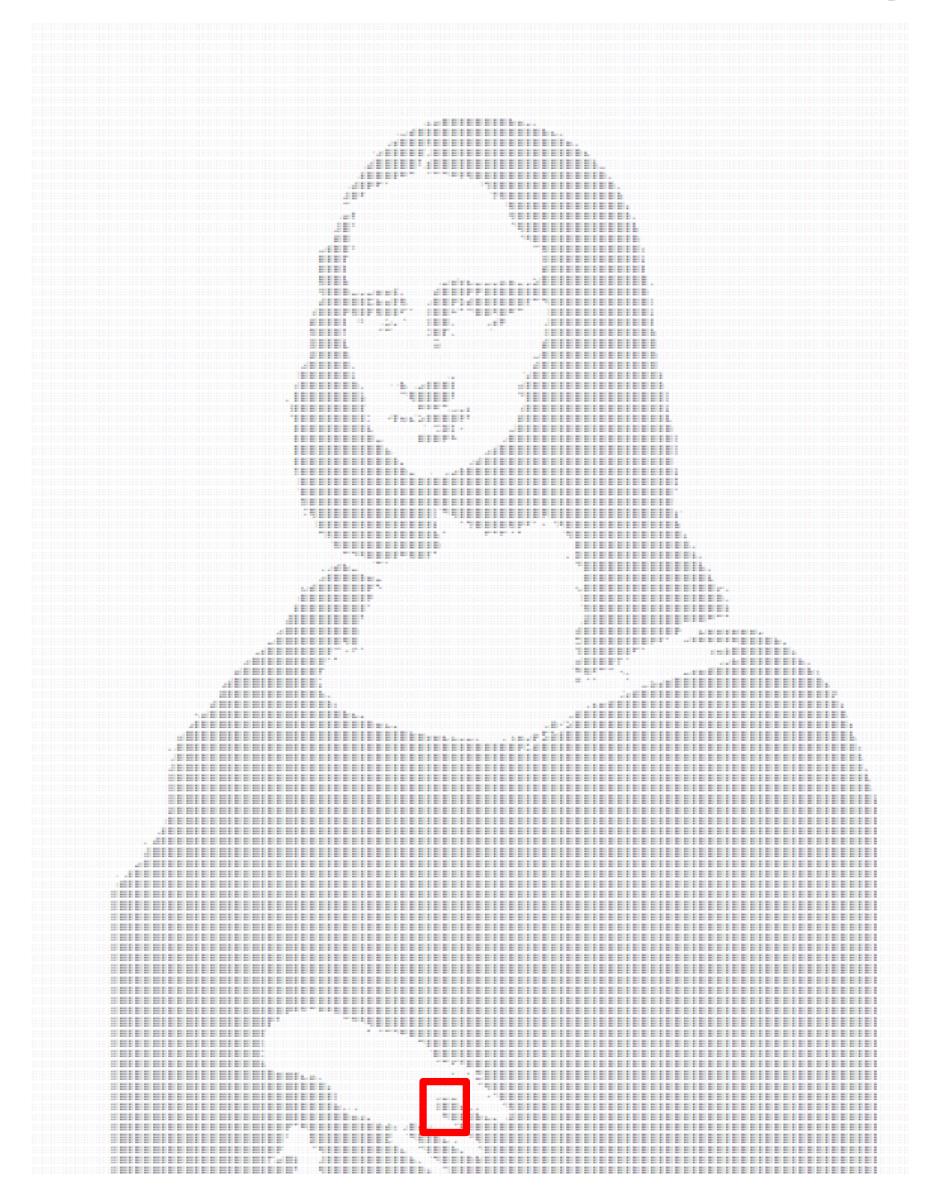
Randomized Response

Early privacy

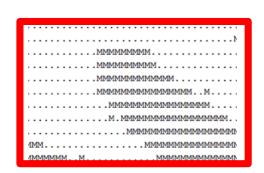
- Tammy, the tax investigator assigns a prior probability of 0.02 to Bob having dodged his taxes. Then she noticed he answered **Yes** to the survey.
- What is her posterior probability?

$$Pr(Dodge | Yes) = \frac{Pr(Dodge) Pr(Yes | Dodge)}{Pr(Dodge) Pr(Yes | Dodge) + Pr(NoDodge) Pr(Yes | NoDodge)}$$
$$= \frac{0.02 \cdot \frac{3}{4}}{0.02 \cdot \frac{3}{4} + 0.98 \cdot \frac{1}{4}}$$
$$\approx 0.058$$

- Tammy's beliefs haven't shifted too much.
- Randomness turns out to be a useful technique for preventing information leakage.



An individual's training data



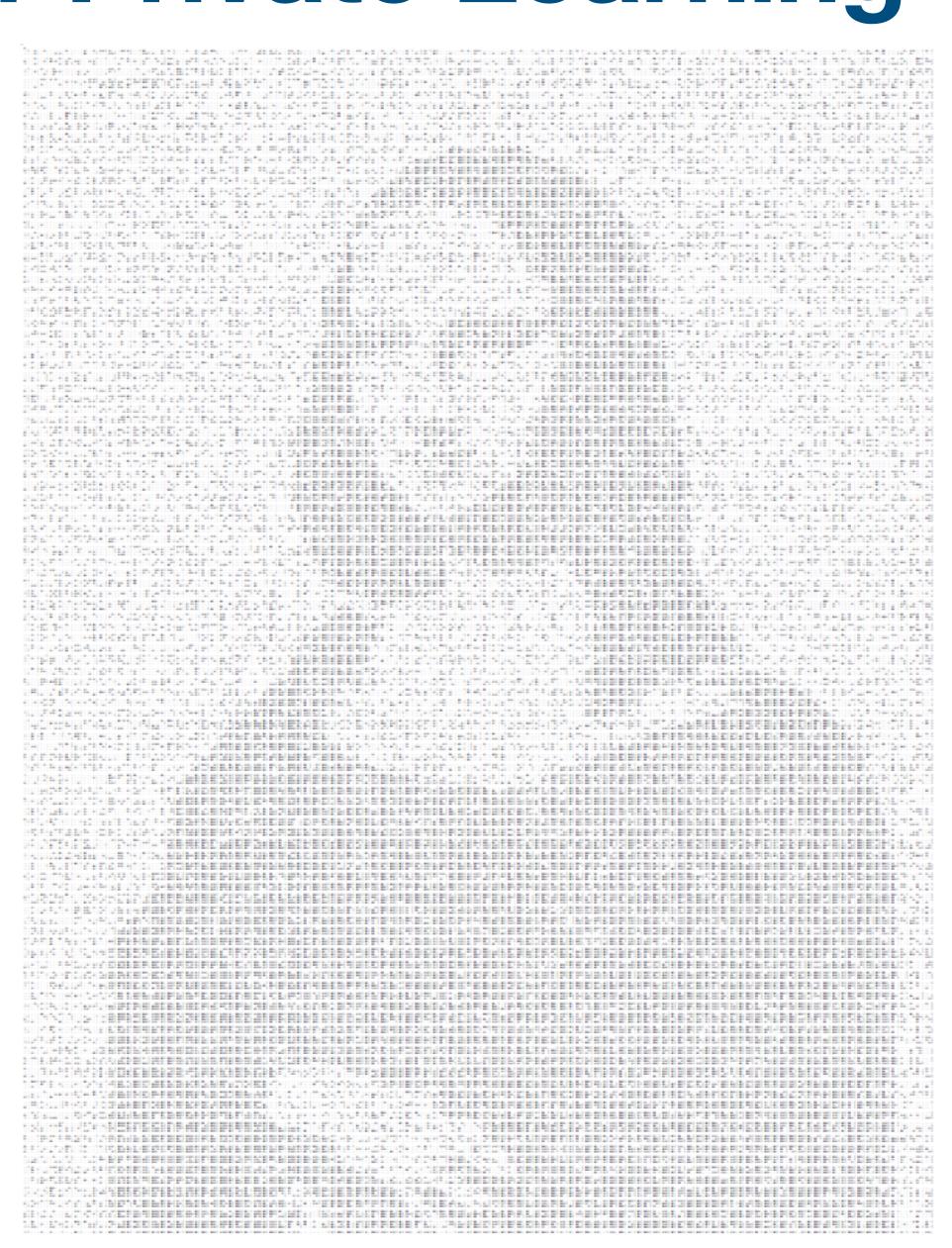
٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•			•									•		•	•																			. 1
												Μ	11	AI	M	M	M	Μ	Μ	IM.	ĺΜ	Ι.														
												M	n	AII	M	Μ	Μ	Μ	Μ	IM.	ĺΜ	IM.	١.													
												Ν	n	AII	M	M	Μ	М	Μ	IM.	ſΜ	[M	IM.	IM	IM.	ı .										
																																				•
																																				ſΝ
1	M	M	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	M	IM.	IM.	IM	II.	IM	IN	IIV.	IM	II.	IM.	IM	11	4ľ	11	ΠN
1	M	Μ	M	M	M	M			M														M	ľ	IM	ſΜ	II.	IV.	IV	IM	IM.	ſΝ	1	41	11	Μľ

An individual's training data

Each bit is flipped with probability 51%

```
...M..MM.MM..MMM.M..M...M...MM..
.MM....MMM....MMMMMMMM...M...MM
..M...M....MM..MMMMMMM...M...
M....M..MM.MMMMMMMMMMMMMM....M
....M....M.M.M.MMMMMM...MMMMM...
...M....M.MM.M..M..M..M..MM.MMMMM
M...M.M...M.M..M..MMM.MMMMM.MMMMM
.MMM.M....M.M.M.....MMMMMMMM.M
```

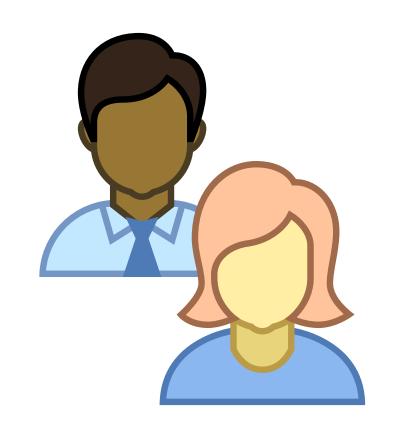
Big picture remains!



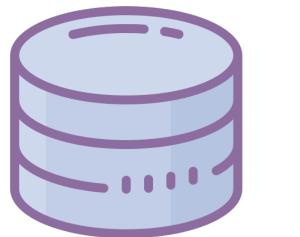
Part I: Foundation

Differential Privacy

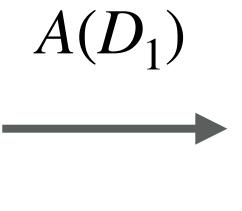
Intuition



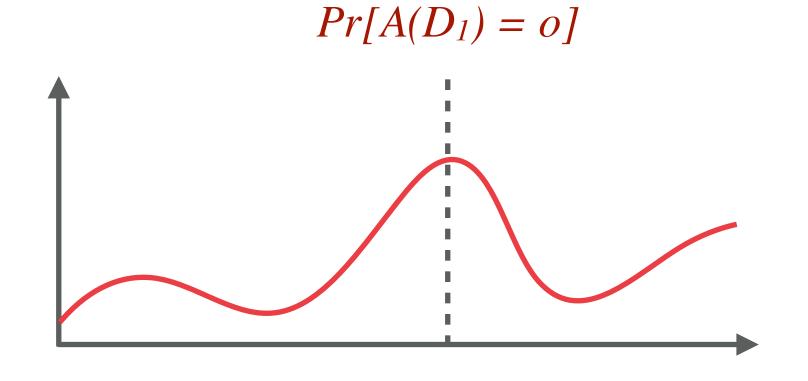
Dataset D_1



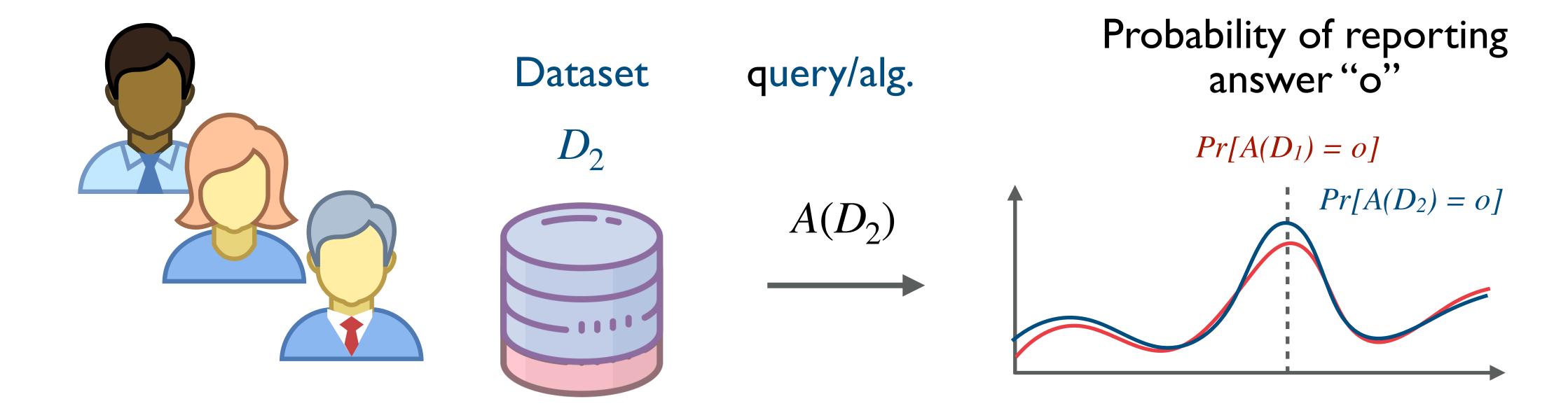
query/alg.



Probability of reporting answer "o"



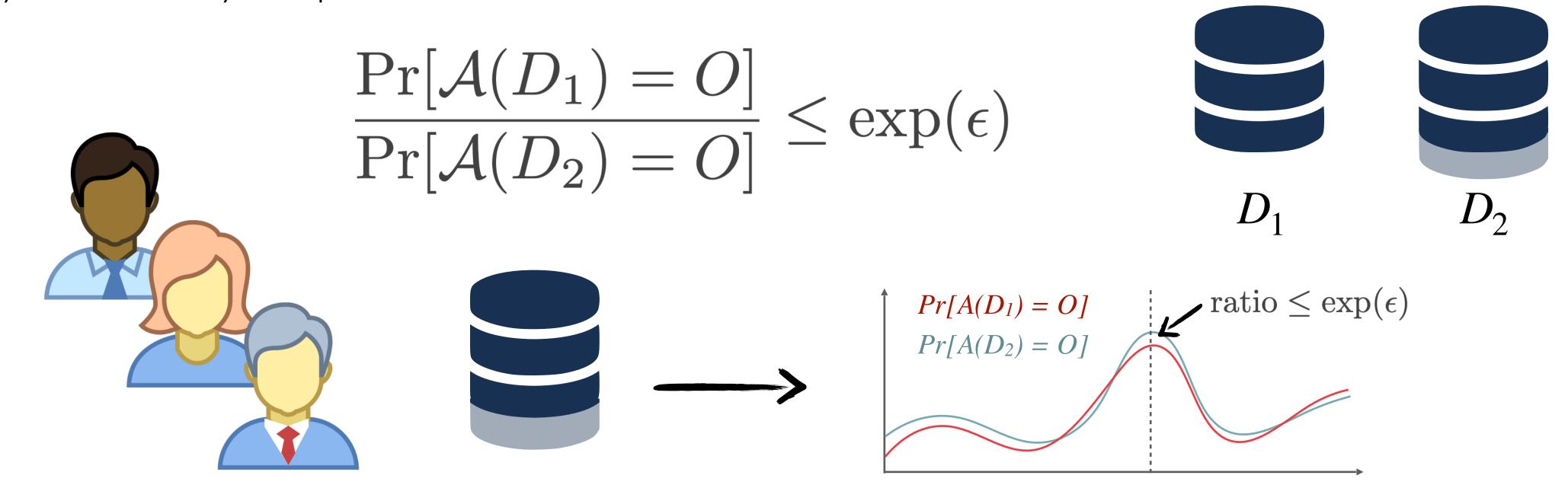
Intuition



Should not be able do distinguish between weather the input was D1 or D2 no matter what the output is

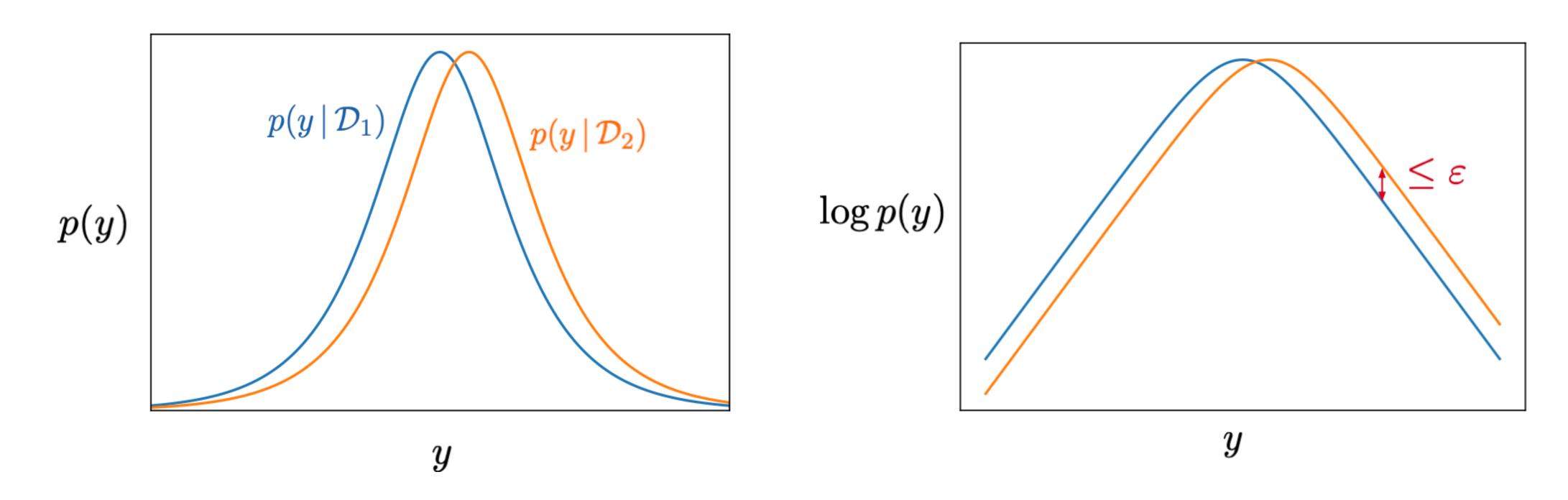
Definition

A randomized algorithm \mathscr{A} is ε -differentially private if, for all pairs of inputs D_1, D_2 , differing in one entry, and for any output O:



Intuition: An adversary should not be able to use output O to distinguish between any D_1 and D_2

Visually



Notice that the tail behavior is important!

Differential Privacy

What can we infer?

- Alice is an attacker who wants to figure out if Bob(x) is in the cancer database D. Her prior for him being in the database is 0.4. D is ε -differentially private. She makes a query and gets back y = M(D).
- After observing y, she computes the posterior using Bayes' rule:

$$\Pr(x \in \mathcal{D} \mid y) = \frac{\Pr(x \in \mathcal{D}) \Pr(y \mid x \in \mathcal{D})}{\Pr(x \in \mathcal{D}) \Pr(y \mid x \in \mathcal{D}) + \Pr(x \notin \mathcal{D}) \Pr(y \mid x \notin \mathcal{D})}$$

$$\geq \frac{\Pr(x \in \mathcal{D}) \Pr(y \mid x \in \mathcal{D})}{\Pr(x \in \mathcal{D}) \Pr(y \mid x \in \mathcal{D}) + \exp(\varepsilon) \Pr(x \notin \mathcal{D}) \Pr(y \mid x \in \mathcal{D})}$$

$$= \frac{\Pr(x \in \mathcal{D})}{\Pr(x \in \mathcal{D}) + \exp(\varepsilon) \Pr(x \notin \mathcal{D})}$$

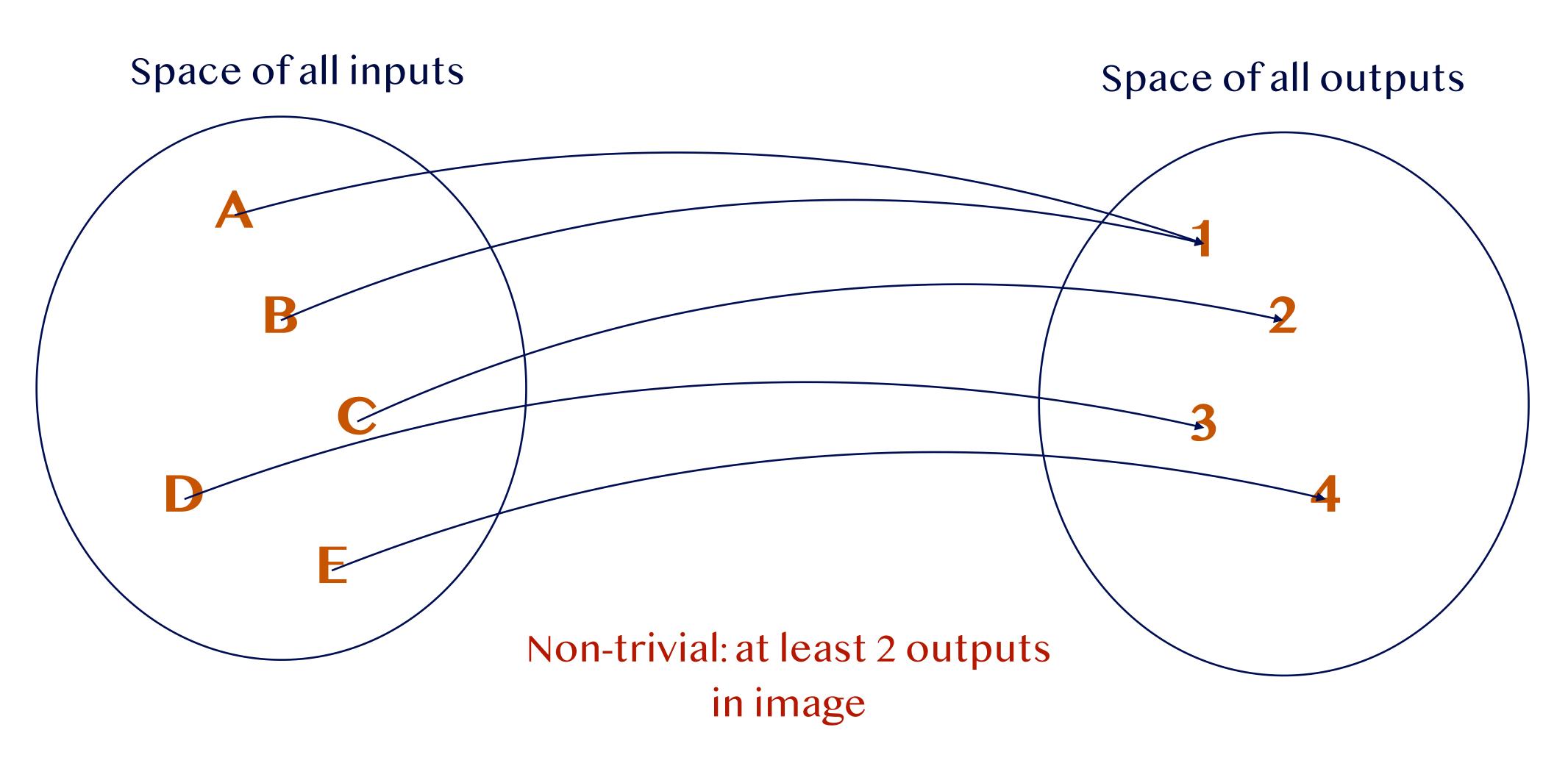
$$\geq \frac{\Pr(x \in \mathcal{D}) \Pr(x \notin \mathcal{D})}{\Pr(x \in \mathcal{D}) + \exp(\varepsilon) \Pr(x \notin \mathcal{D})}$$

$$\geq \frac{\Pr(x \in \mathcal{D}) \Pr(x \notin \mathcal{D})}{\Pr(x \in \mathcal{D}) + \exp(\varepsilon) \Pr(x \notin \mathcal{D})}$$

• Similarly $\Pr(x \in D \mid y) \leq 0.4 \exp(\epsilon)$ so Alice hasn't learn much about Bob.

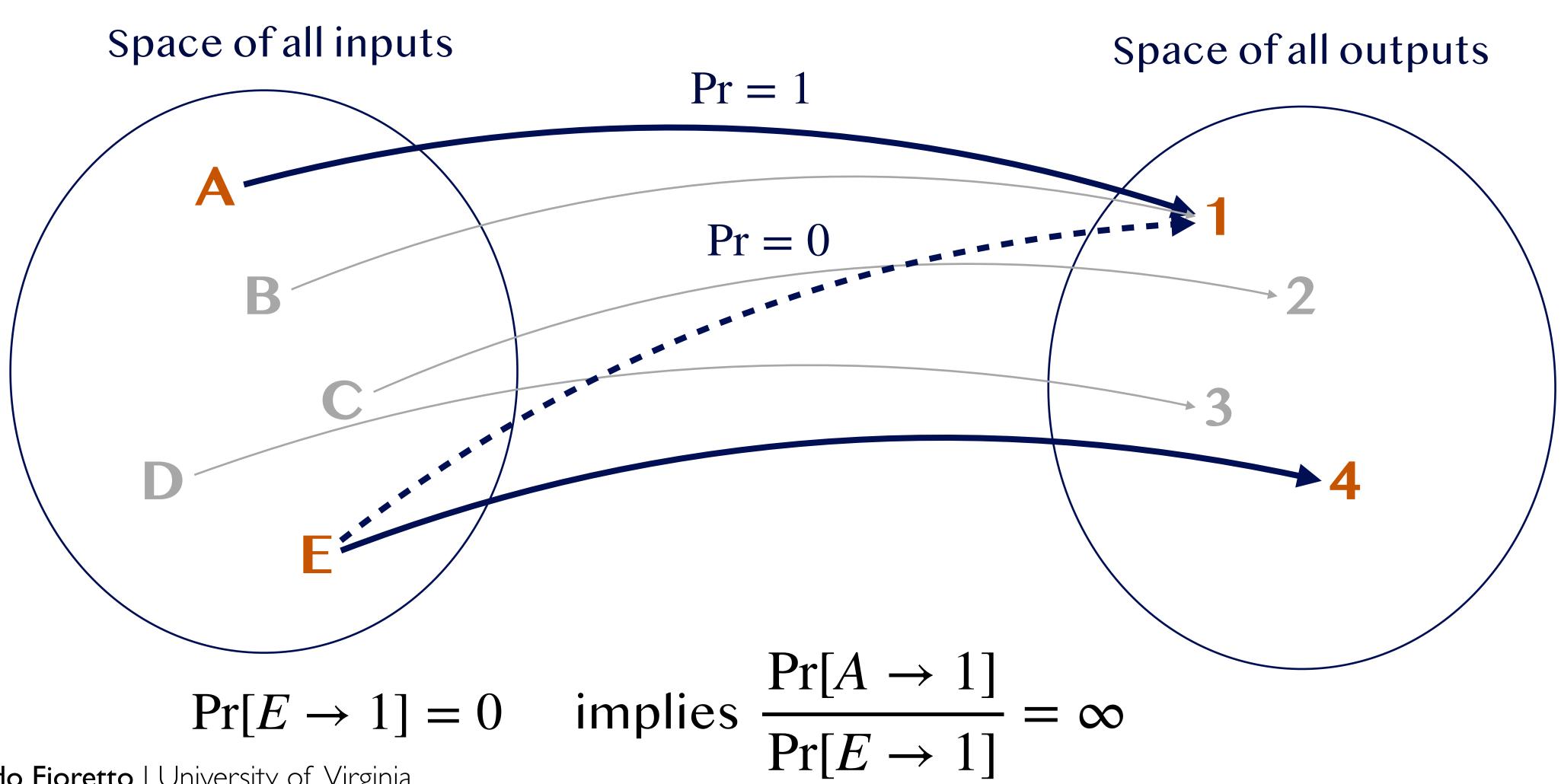
Differentially Private Algorithms

Can Non-trivial Deterministic Algorithms Satisfy DP?

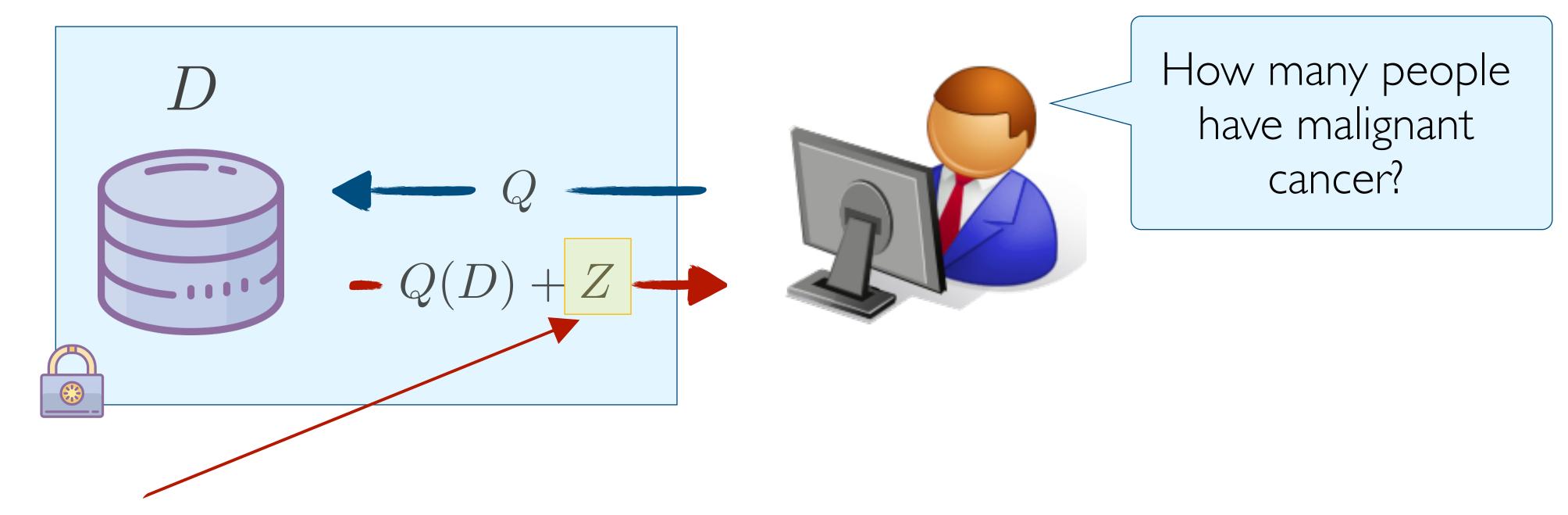


Differentially Private Algorithms

Can Non-trivial Deterministic Algorithms Satisfy DP?



How do we design DP algorithms?

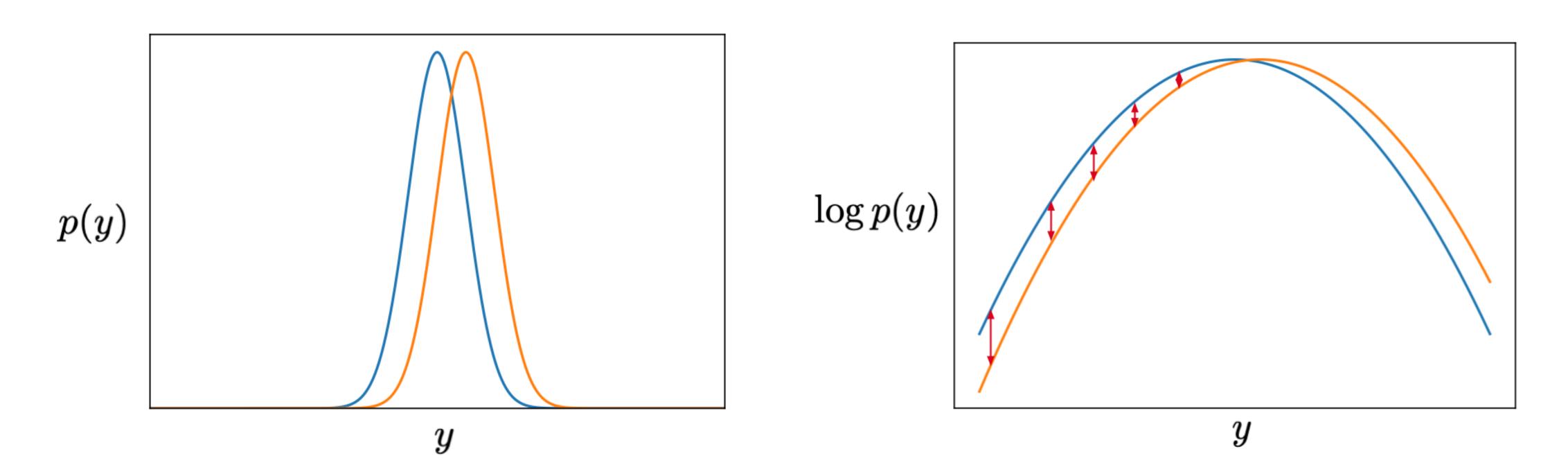


Add noise to the true answer such that:

- 1. Each answer does not leak too much information about the dataset
- 2. Noisy answers are close to the original ones

What kind of noise?

Gaussian Noise (first attempt)



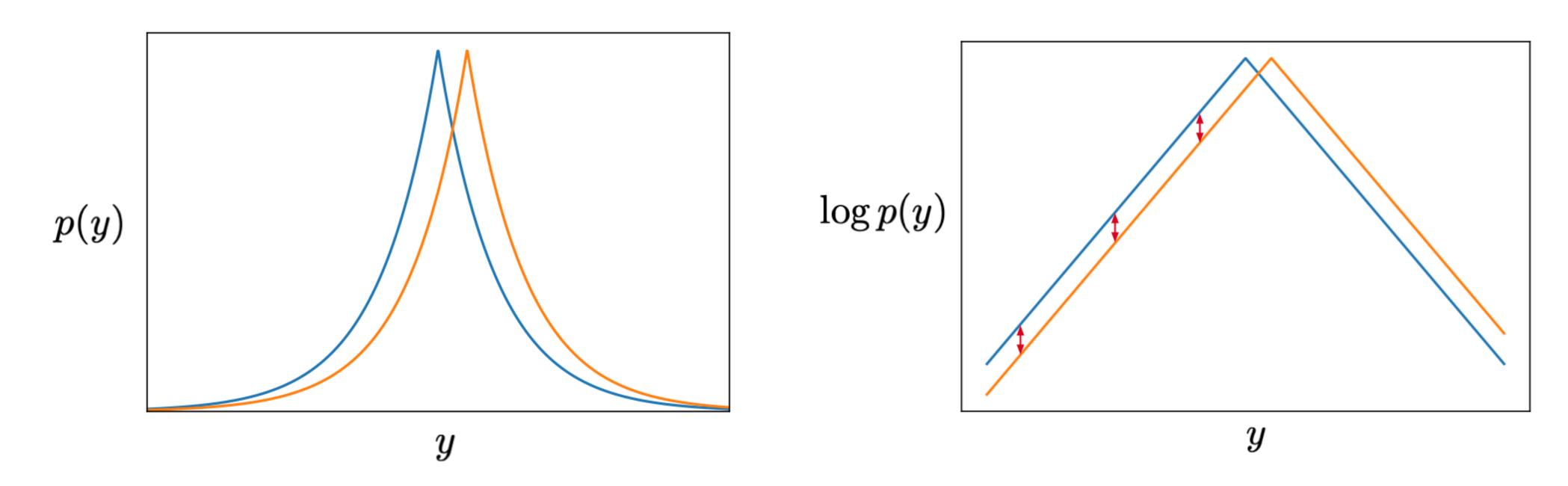
Gaussian noise violates our definition, but only because of the tails. It satisfies a different definition of differential privacy which allows violating the ε constraint with small probability, but that's beyond the scope of this slide.

What kind of noise?

Laplace noise

The Laplace distribution
$$p(y; \mu, b) = \frac{1}{2b} \exp\left(-\frac{|y - \mu|}{b}\right)$$

Variance = $2b^2$ (b is a parameter determining the scale of the distribution)



Is exactly what we need!

Laplace Mechanism

ullet Global sensitivity: Let f be a deterministic vector-valued function of a dataset. The L^1 sensitivity of f is defined as:

$$\Delta f = \max_{\substack{\mathcal{D}_1,\mathcal{D}_2 \text{neighbours}}} \|f(\mathcal{D}_1) - f(\mathcal{D}_2)\|_1.$$

Recall that
$$||x||_1 = \sum_i |x_i|$$

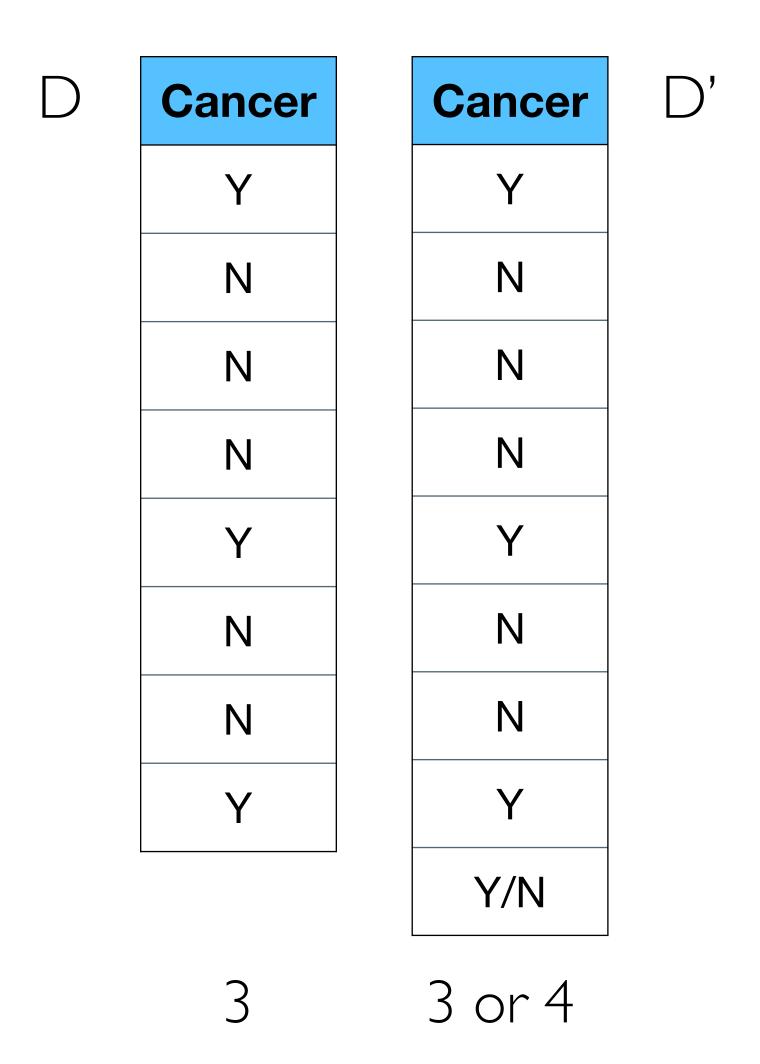
• Laplace mechanism: returns a vector y whose entries are independently sampled from Laplace distributions

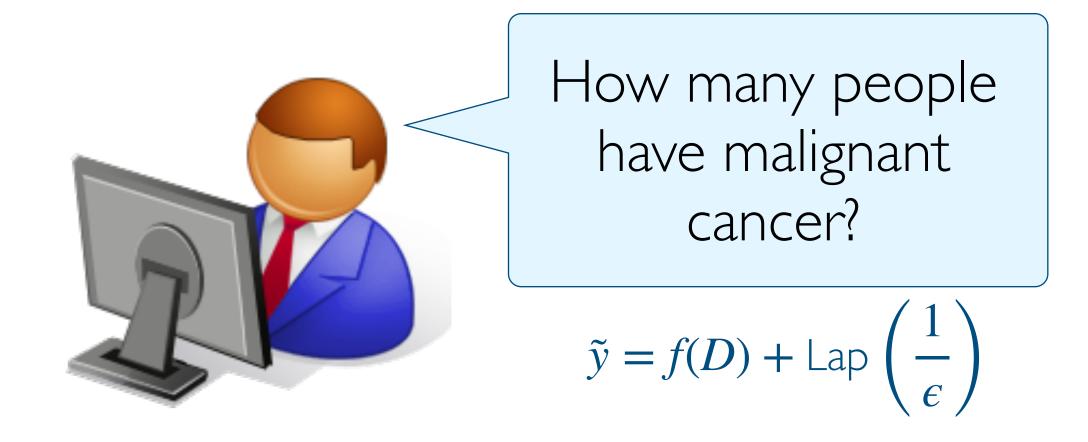
$$y_i \sim \mathrm{Laplace}\left(f(\mathcal{D})_i, \ \frac{\Delta f}{\varepsilon}\right),$$
 Noise **calibrated** to the privacy requirement:

where $f(D)_i$ denotes the i-th entry of f(D)

Higher sensitivity functions and tighter privacy constraints imply more noise

Sensitivity: Count query





What is the sensitivity of this query?

$$\Delta f = \max_{\substack{\mathcal{D}_1,\mathcal{D}_2 \text{neighbours}}} \|f(\mathcal{D}_1) - f(\mathcal{D}_2)\|_1.$$

$$\max(|3-3|,|3-4|)=1$$

Sensitivity: SUM query

- Suppose all values x are in [a, b], with $a, b \ge 0$
- What is the sensitivity of the SUM = $\sum_{x \in D}$ query?
- Sensitivity: **b**

E.g., a=3, b=5

value
3
4
5
3
5
4

24

value
3
4
5
3
5
4
[3, 5]

[27, 29]

Laplace Mechanism Privacy

- Consider neighboring datasets D1 and D2
- Consider some output O

$$\frac{\Pr[M(D_1) = O]}{\Pr[M(D_2) = O]} = \frac{\Pr[Q(D_1) + Z = O]}{\Pr[Q(D_2) + Z = O]}$$
$$= \frac{\exp(-|O - Q(D_1)|/b)}{\exp(-|O - Q(D_2)|/b)}$$

By triangle inequality
$$\leq \exp(|Q(D_1) - Q(D_2)|/b)$$

 $\leq \exp(\Delta_Q/\epsilon) = \exp(\epsilon)$

$$f(x \mid \mu = 0, b) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right)$$

$$b = (\Delta_Q/\epsilon)$$

Laplace Mechanism

Example

- Example: What fraction of Danish have blue eyes?
- Mechanism returns the counts (ξ_1, ξ_2) of Danish with and without blue eyes, plus Laplace noise.
- We'd like to satisfy a privacy constraint of $\varepsilon = 0.1$. How much Laplace noise should we add?
- Ans: $\Delta f / \epsilon = 1/0.1 = 10.$
- The noise scale is independent of the population size!
- I.e., you can answer the query to within about ± 10 people, out of the population of Denmark. So you can obtain very accurate answers to queries over large populations.

•

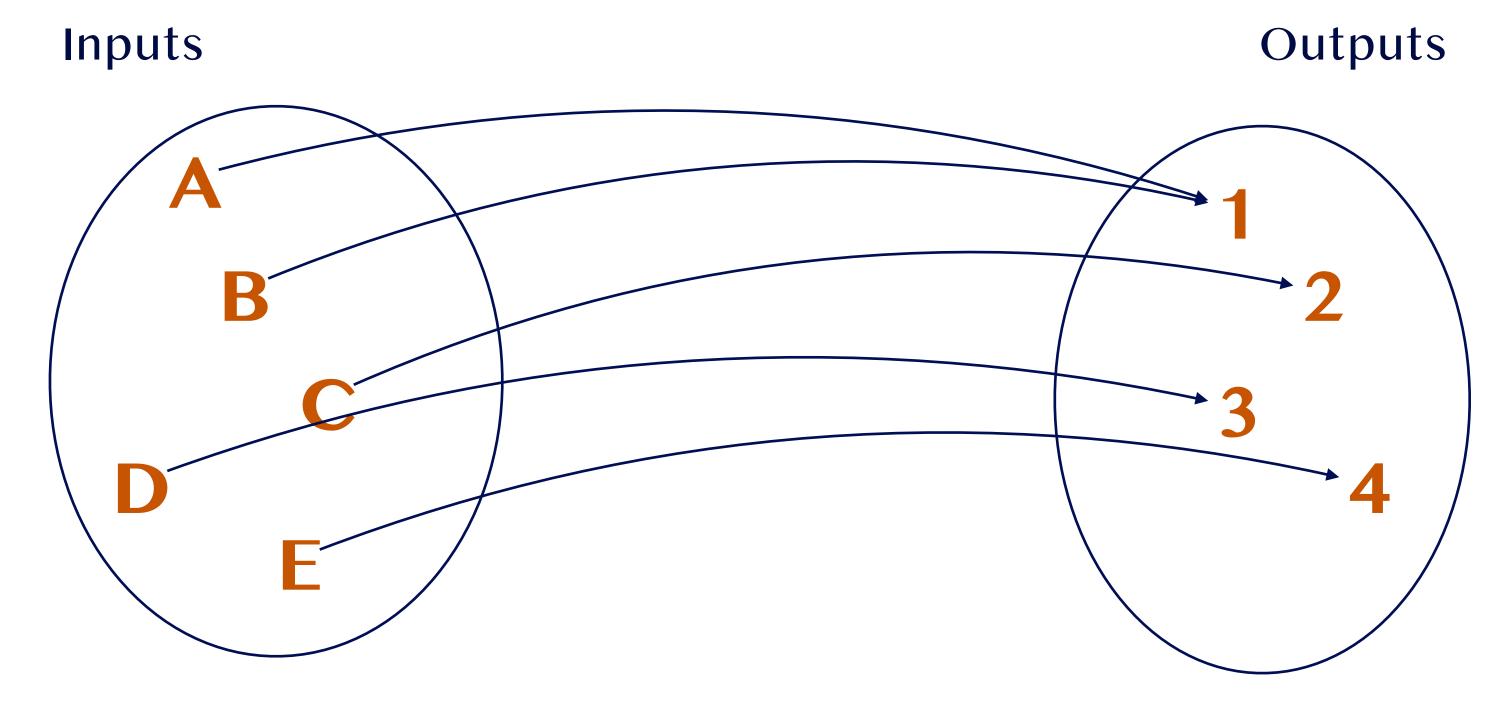
Error of the Laplace Mechanism

- Laplace mechanism works for any function that returns a real number
- Mean squared error:

$$\mathbb{E}\left[\tilde{x} - x\right]^2 = \text{Var}\left(\text{Lap}\left(\frac{\Delta_f}{\epsilon}\right)\right) = 2\left(\frac{\Delta_f}{\epsilon}\right)^2$$

Discrete mappings

• Consider some mapping f (can be deterministic or probabilistic):



How to construct a differentially private version of f?

- Suppose the goal is to make a decision f(D).
- We have a scoring function $\mathscr{L}: \mathscr{D} \times \mathscr{R} \to \mathbb{R}_+$

• Example:

- D = dataset of nationality of a set of people
- f(D): most frequent nationality in D
- • $\#_D(o)$: number of people in D with nationality "o"
- $\bullet \mathcal{L}(D,o) = |\#_D(o) \#_D(f(D))|$

- Given a function $f: \mathcal{D} \to \mathcal{R}$ and a loss function $\mathcal{L}: \mathcal{D} \times \mathcal{R} \to \mathbb{R}_+$
- Randomly sample an output o from ${\mathcal R}$ with probability:

$$\Pr(Y = y) \propto \exp\left(-\frac{\epsilon}{2\Delta \mathcal{L}}\mathcal{L}(D, y)\right)$$

- Where $\Delta_{\mathscr{Z}} = \max_{o \in \mathscr{R}} \max_{D,D' \in \mathscr{D}} |\mathscr{L}(D,o) \mathscr{L}(D',o)|$ is the sensitivity of the loss function
- ullet The result is basically a softmax of $-\mathcal{L}$
- Note: for every output o, Pr[o is selected] > 0.

- ullet The exponential mechanism is ϵ -DP
- ullet For two neighboring datasets D_1,D_2 , and any value y

$$\frac{p(y \mid \mathcal{D}_{1})}{p(y \mid \mathcal{D}_{2})} = \frac{\frac{\exp(-\frac{\varepsilon}{2\Delta \mathcal{L}}\mathcal{L}(y, \mathcal{D}_{1}))}{\sum_{y'} \exp(-\frac{\varepsilon}{2\Delta \mathcal{L}}\mathcal{L}(y', \mathcal{D}_{1}))}}{\frac{\exp(-\frac{\varepsilon}{2\Delta \mathcal{L}}\mathcal{L}(y, \mathcal{D}_{2}))}{\sum_{y'} \exp(-\frac{\varepsilon}{2\Delta \mathcal{L}}\mathcal{L}(y', \mathcal{D}_{2}))}}}$$

$$= \underbrace{\frac{\exp(-\frac{\varepsilon}{2\Delta \mathcal{L}}\mathcal{L}(y, \mathcal{D}_{1}))}{\exp(-\frac{\varepsilon}{2\Delta \mathcal{L}}\mathcal{L}(y, \mathcal{D}_{1}))}}_{\leq \exp(\varepsilon/2)} \cdot \underbrace{\frac{\sum_{y'} \exp(-\frac{\varepsilon}{2\Delta \mathcal{L}}\mathcal{L}(y', \mathcal{D}_{2}))}{\sum_{y'} \exp(-\frac{\varepsilon}{2\Delta \mathcal{L}}\mathcal{L}(y', \mathcal{D}_{1}))}}_{\leq \exp(\varepsilon/2)}$$

• Hence
$$\frac{p(y|D_1)}{p(y|D_2)} \le \exp(\epsilon)$$

Part l: Foundation

Properties of Differential Privacy

Privacy Leakage

Dinur/Nissim Result

- To ensure some utility on the query answers, some information about each individual in the dataset must be leaked.
- We can only hope to bound the amount of disclosure.
- Therefore: There is a limit on the number of queries that can be answered.

Privacy Leakage

Dinur/Nissim Result

- To ensure some utility on the query answers, some information about each individual in the dataset must be leaked.
- We can only hope to bound the amount of disclosure.
- Therefore: There is a limit on the number of queries that can be answered.
- **Dinur/Nissim:** Given a dataset D of size n, a vast majority of records in D can be reconstructed when $n \log(n)^2$ queries are answered privately.
- True even if each query is altered with error up to $o(\sqrt{n})$

Composition

Sequential Composition

- ullet Given A_1, \ldots, A_n algorithms that access a dataset D such that each satisfy ϵ_i -DP
- Then running all n algorithms sequentially satisfies:

$$\left(\sum_{i=1}^{n} \epsilon_{i}\right)$$
-differential privacy

Composition

Sequential Composition

- ullet Given A_1, \ldots, A_n algorithms that access a dataset D such that each satisfy ϵ_i -DP
- Then running all n algorithms sequentially satisfies:

$$\left(\sum_{i=1}^{n} \epsilon_{i}\right)$$
-differential privacy

Parallel Composition

- If $A_1, ..., A_n$ are algorithms that access disjoint datasets $D_1, ...D_n$ such that each satisfy ϵ_i differential privacy
- Then running all k algorithms in parallel satisfies

$$\max\{\epsilon_1, ..., \epsilon_n\}$$
-differential privacy

Post-processing Immunity

• Post-processing immunity: If A enjoys ε -differential privacy and g is an arbitrary data-independent mapping, then $g \circ A$ is ε -differential private.

Part I: Foundation Summary

- Privacy breaches and no control on accessing side information
- Differential private algorithm ensure an attacker can't infer if an individual was in or not a dataset, based on any output
- Building blocks:
 - Laplace, exponential mechanism, (many others)
- Composition rules help using building blocks to create complex algorithms

Responsible Al: Seminar on Fairness, Safety, Privacy and more

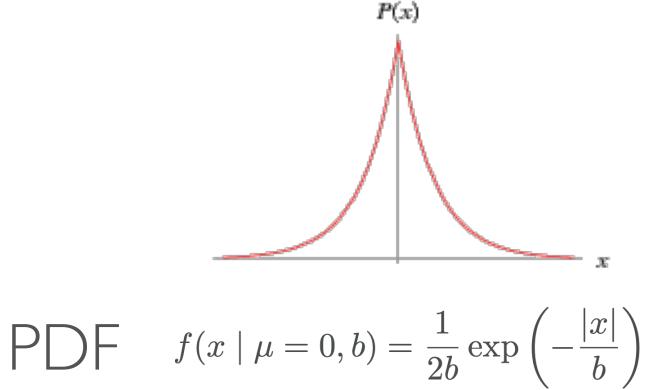
Thank you!

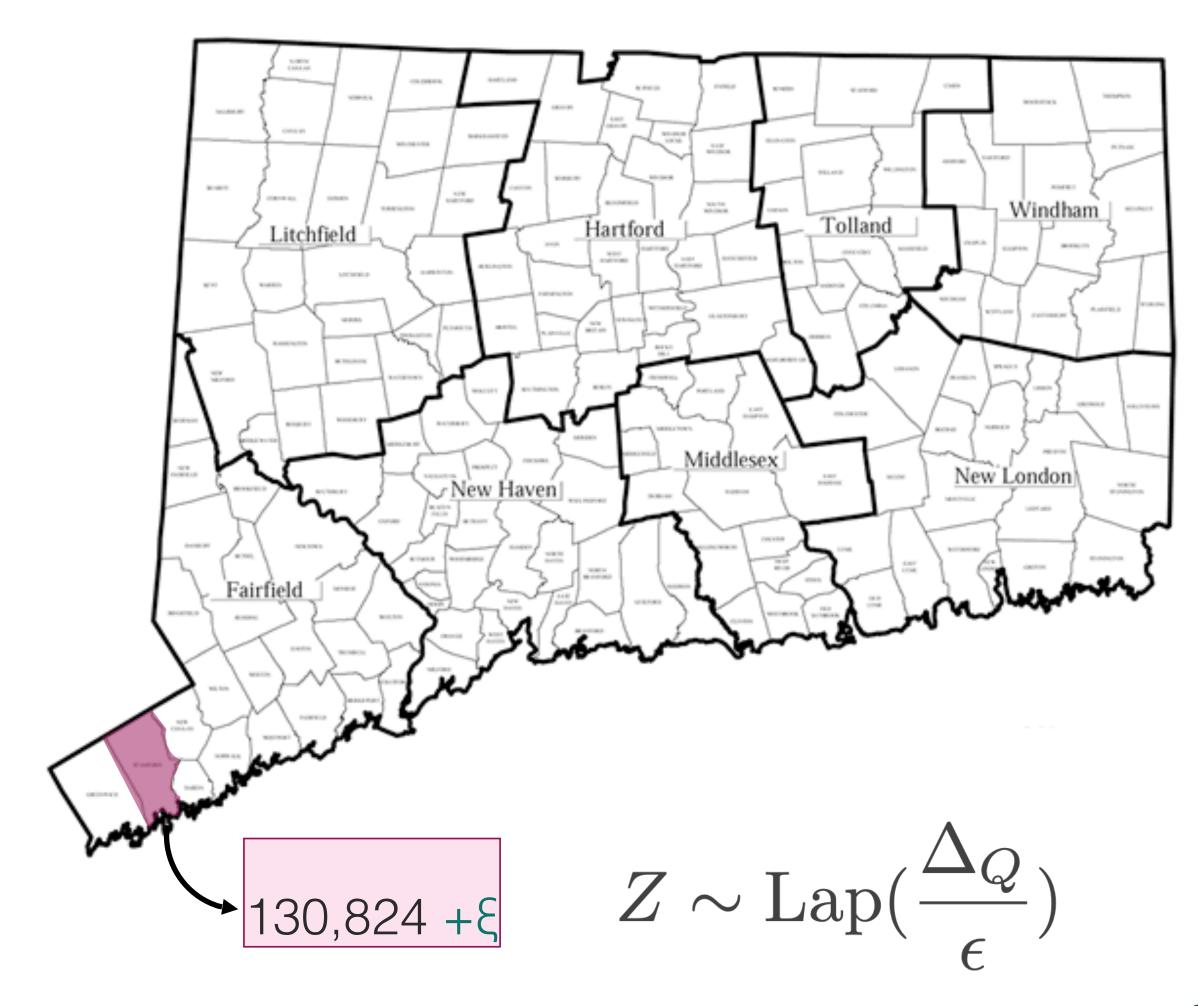
nandofioretto@gmail.com

@nandofioretto

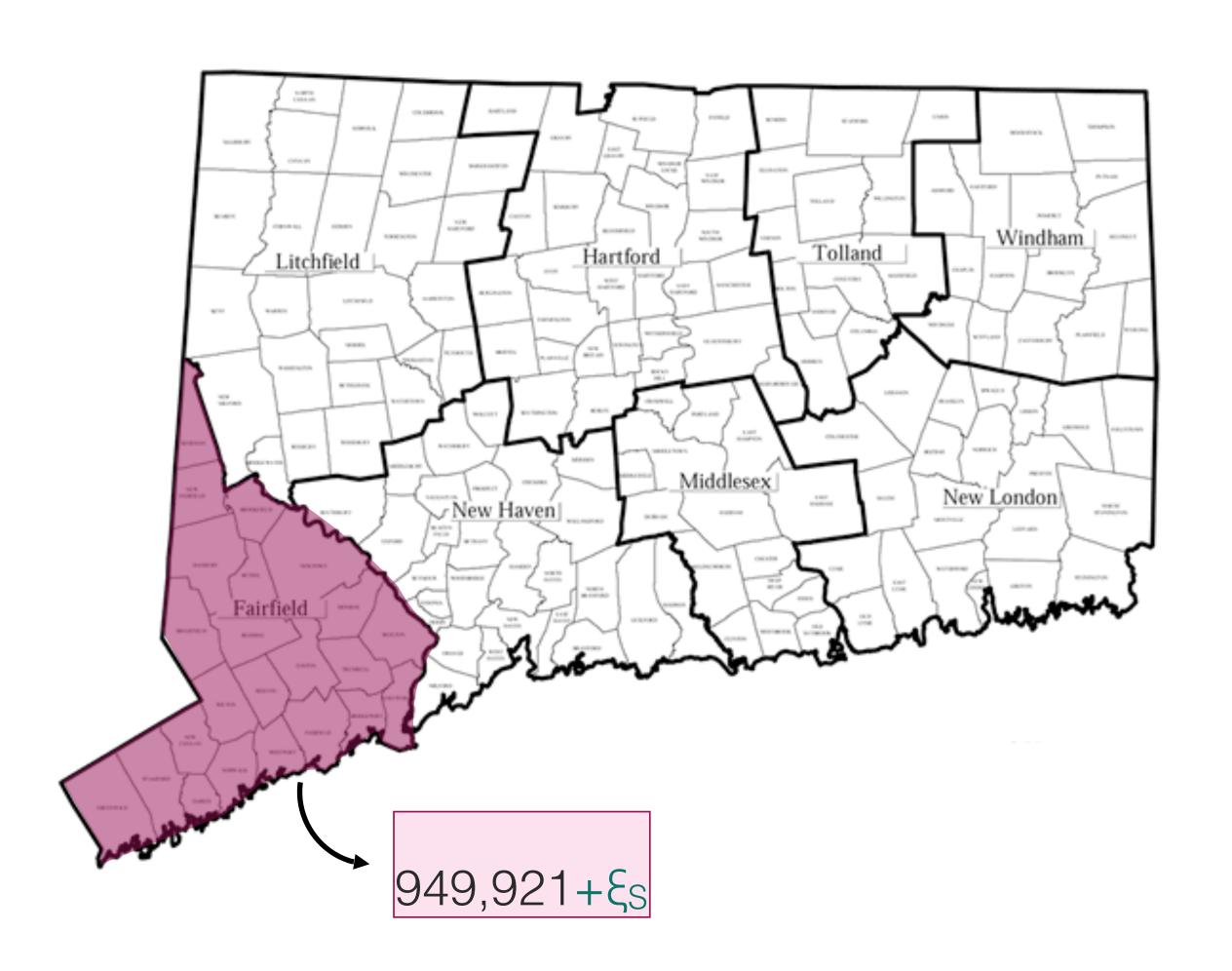
Part II: Algorithms and Consistency Issues

- GOAL: Release socio-demographic feature of the population grouped by:
 - . Census blocks
 - 2. Counties
 - 3. States
 - 4. National level

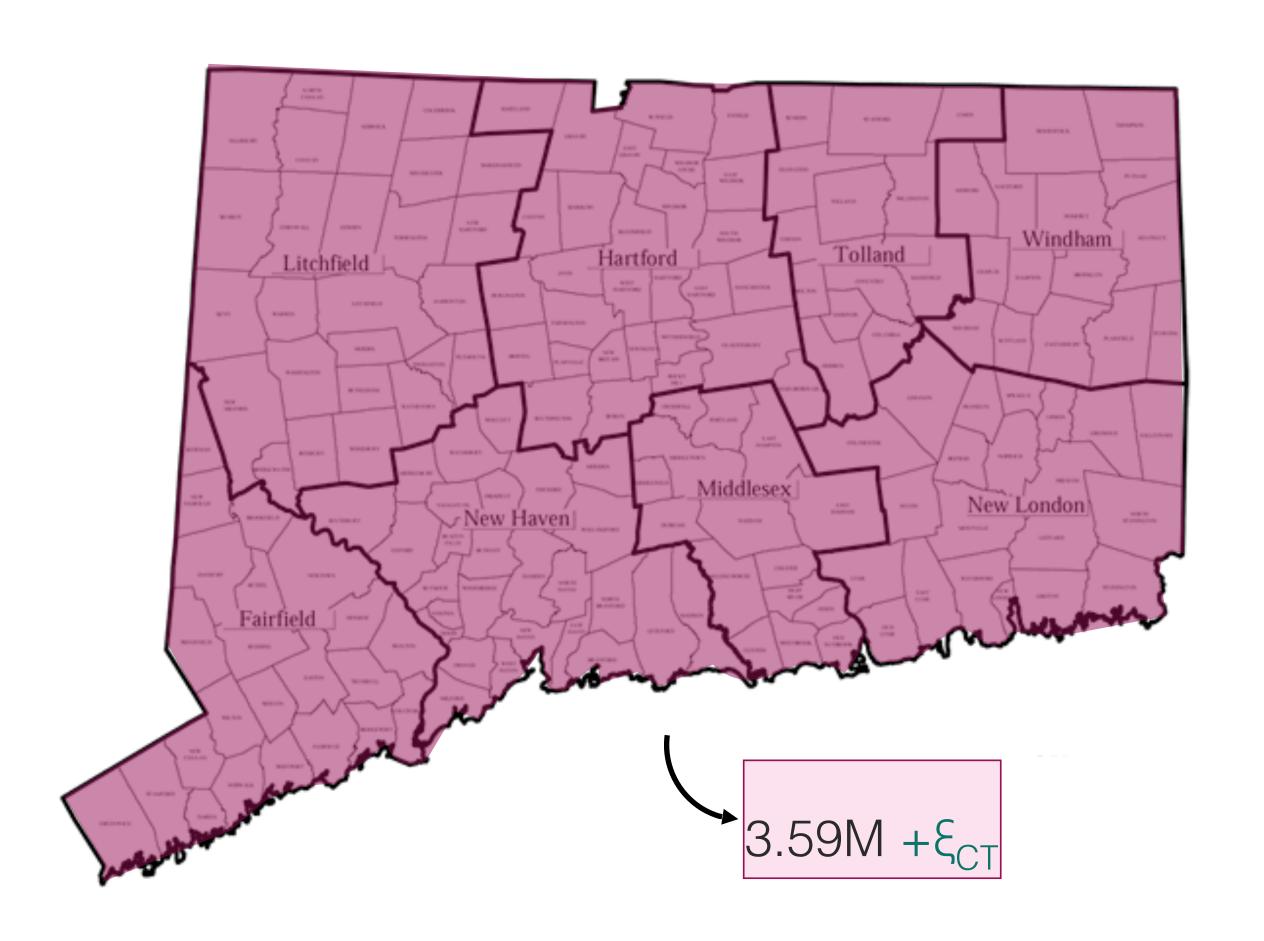




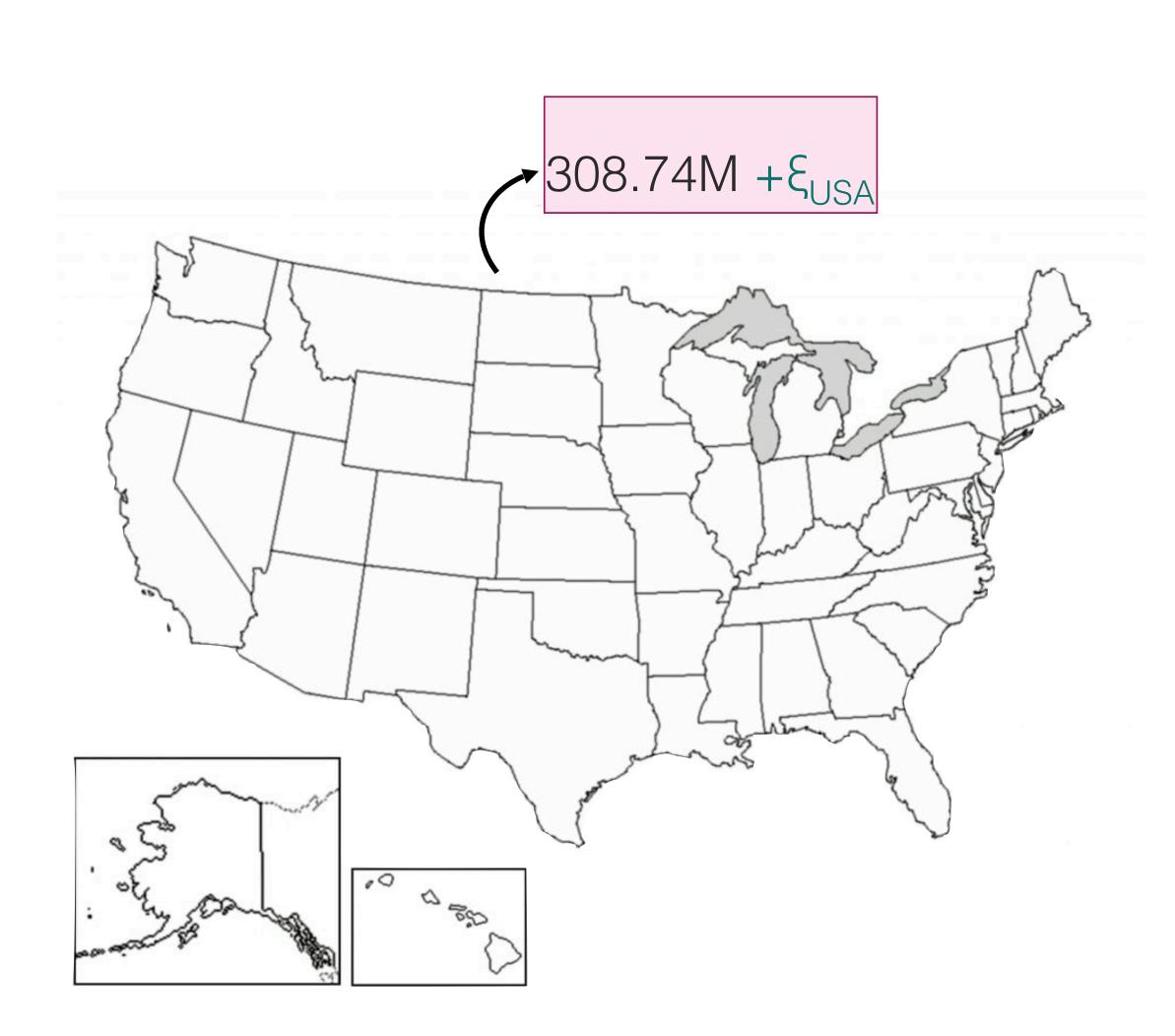
- GOAL: Release socio-demographic feature of the population grouped by:
 - . Census blocks
 - 2. Counties
 - 3. States
 - 4. National level



- GOAL: Release socio-demographic feature of the population grouped by:
 - 1. Census blocks
 - 2. Counties
 - 3. States
 - 4. National level



- GOAL: Release socio-demographic feature of the population grouped by:
 - L. Census blocks
 - 2. Counties
 - 3. States
 - 4. National level



The consistency issue

• Requirements:

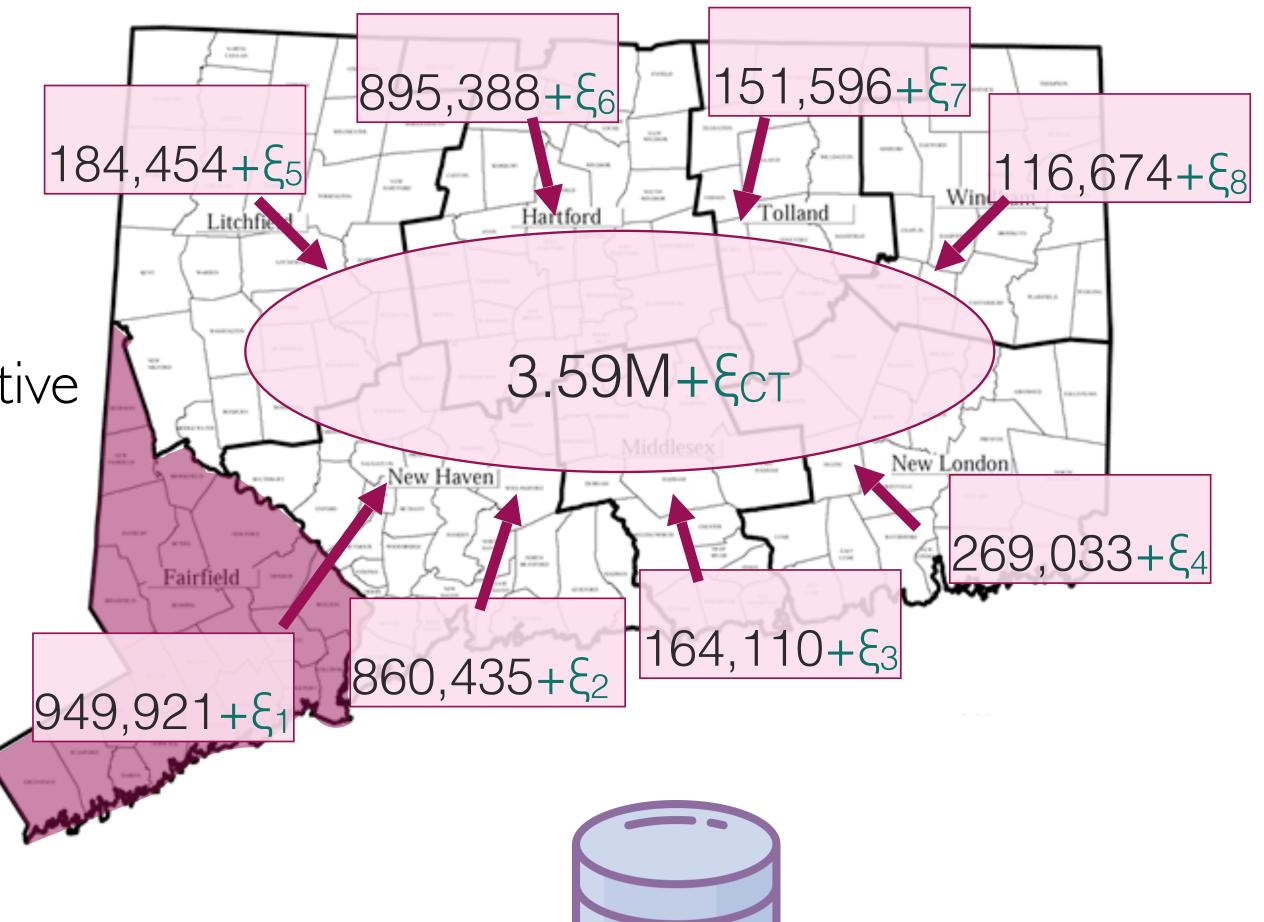
1. Privacy

2. Hierarchical Consistency

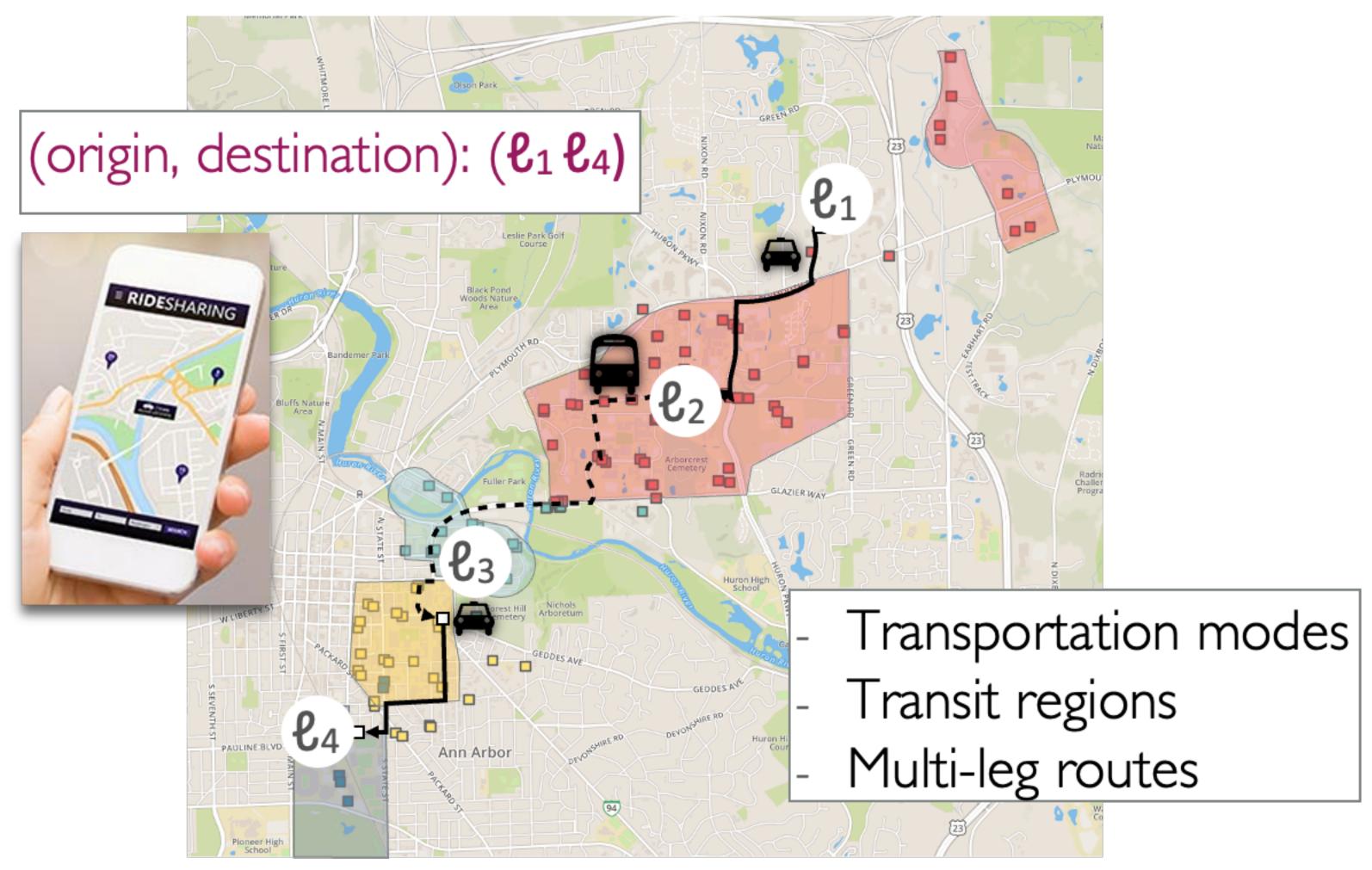
3. Validity: The private values are non-negative

Noise is applied independently to each estimate

• The noisy quantities at a "level" (e.g., state) are inconsistent with the sum of the noisy quantities at the "children levels" (e.g., counties of that state)



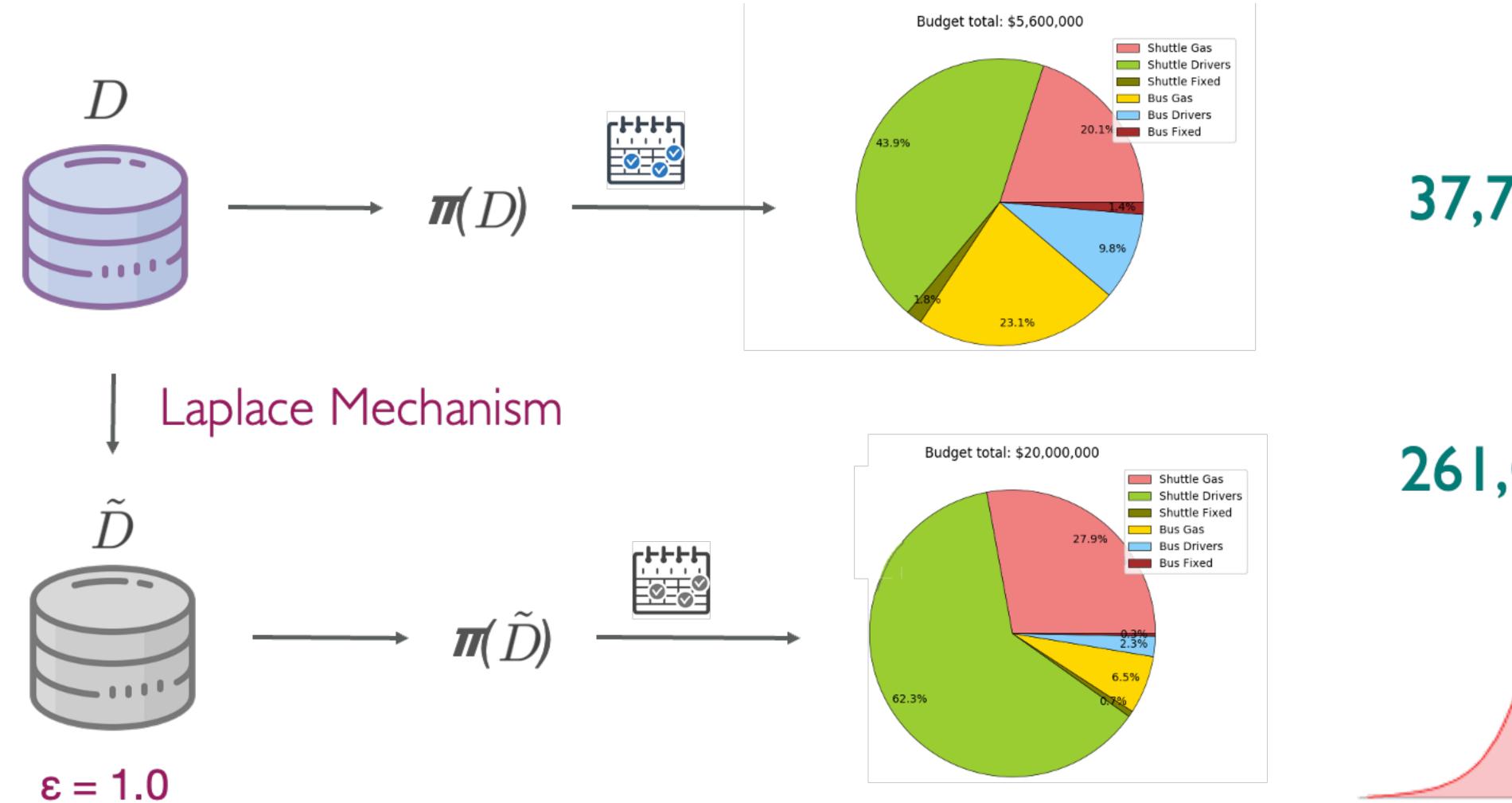
Transportation Application



Data universe: ~30k OD-pairs

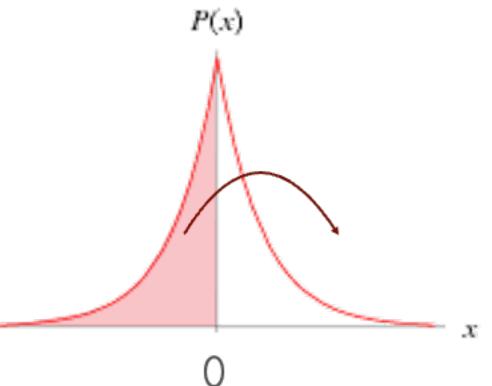
time	origin	destination	count
8:00-8:30	bbr	eecs	34
8:00-8:30	food_crt1	nw2	0
8:00-8:30	Isa	ort3	1
8:00-8:30	sprt	nw4	0
8:00-8:30	bbb	chi	12
• • •			

Differential Privacy Challenge for Mobility



37,714 trips

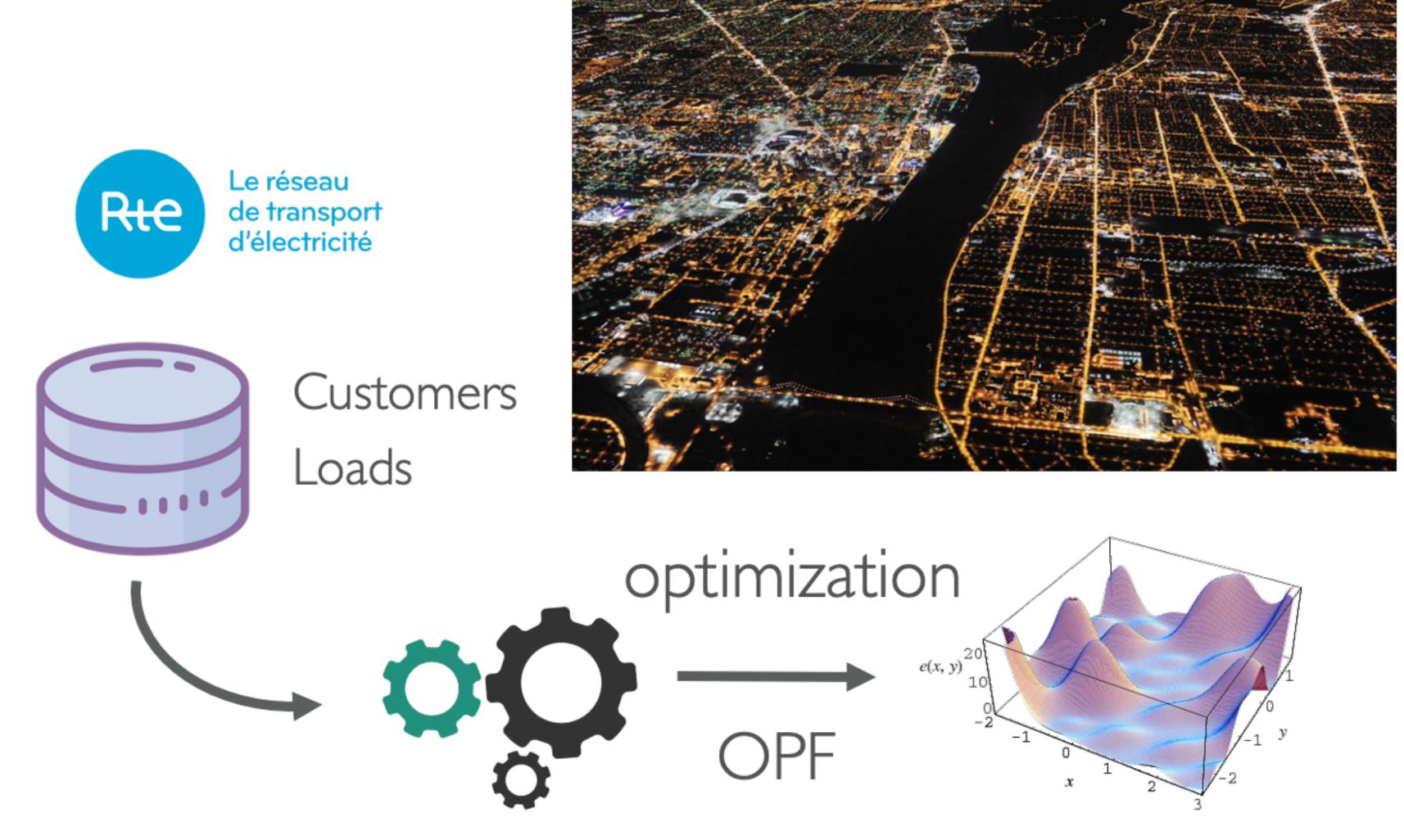
261,032 trips



Fioretto:AAMAS-18

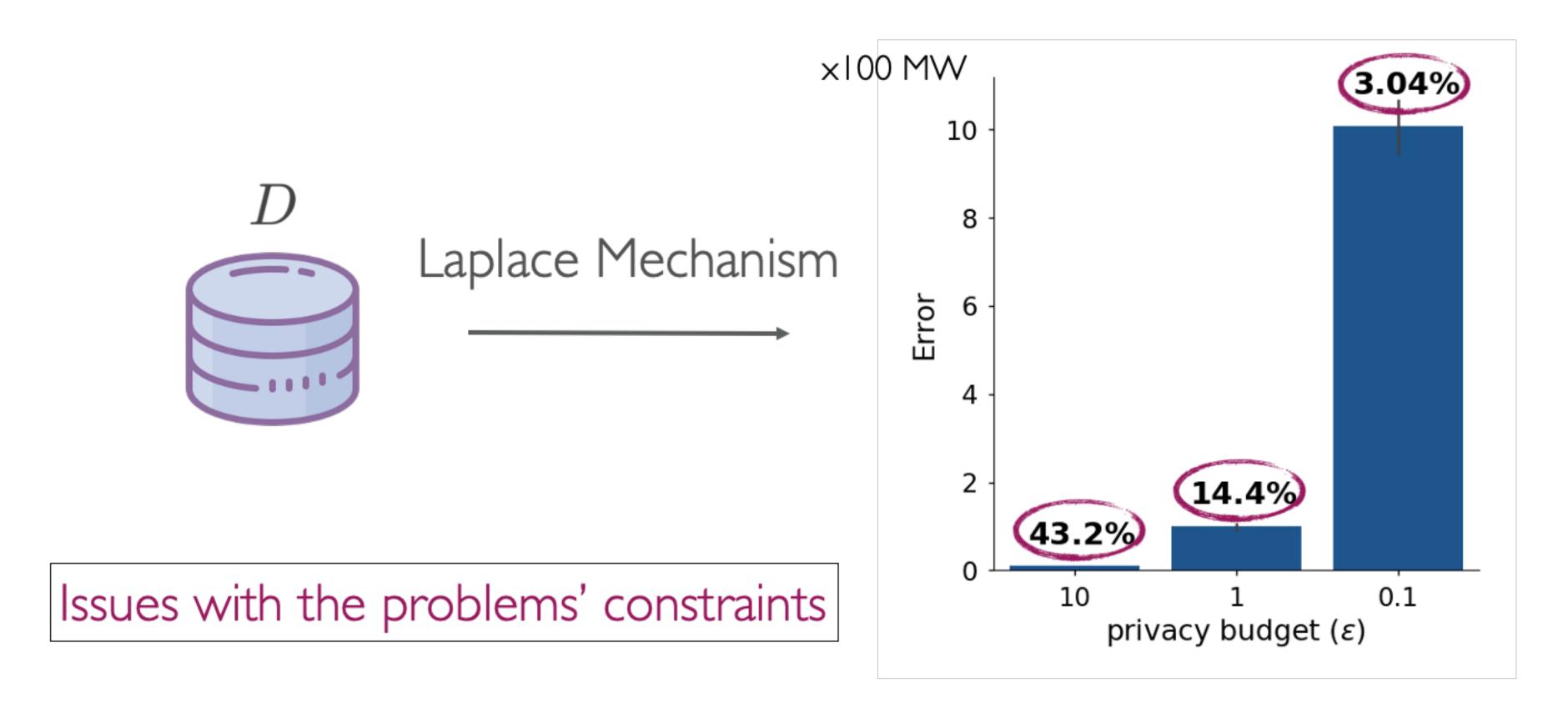
31

Energy Optimization



Differential Privacy Challenge for Energy

Satisfiable OPF solutions %

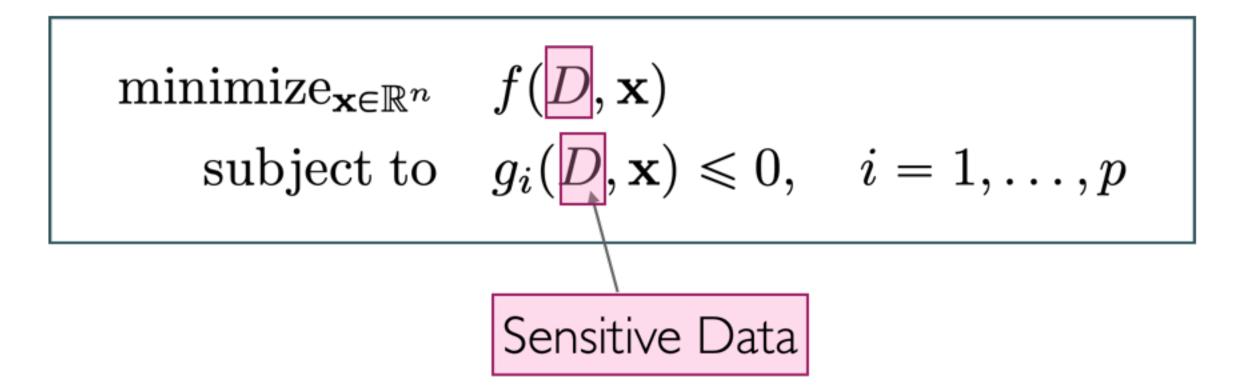


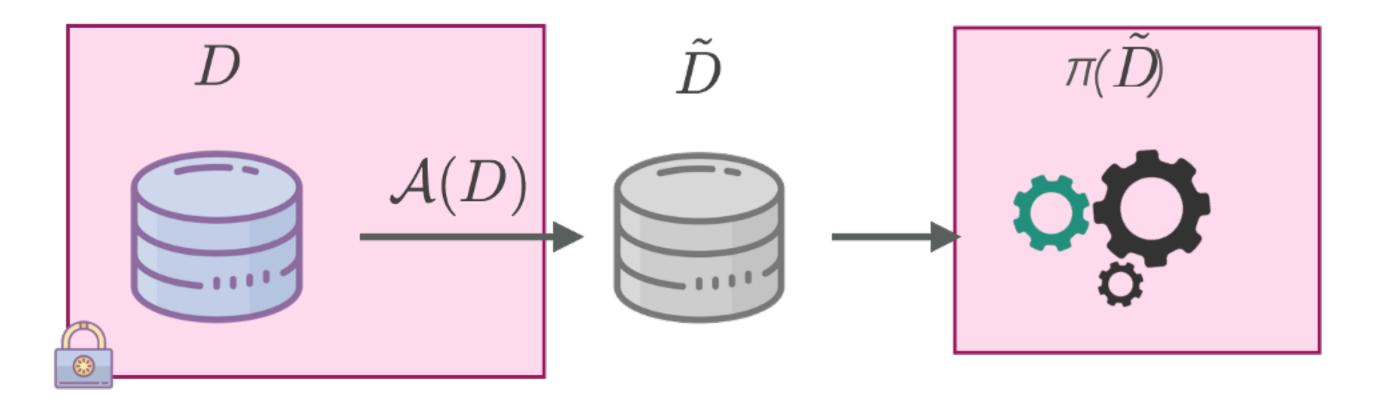
Fioretto:CPAIOR-18; IEEE-TPS:20, IEEE-TSG:20

Differential Privacy is oblivious to the structure of the dataset and the constraints of the underlying problem

Constrained based DP

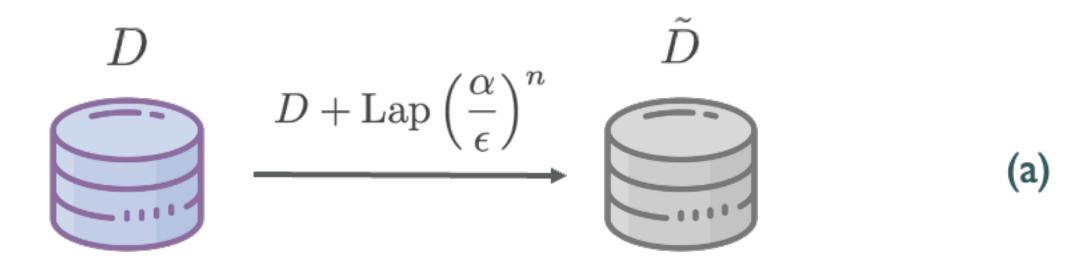
We are interested in solving:





Consider a dataset $D \in \mathbb{R}^n$ of values

#I



#2

minimize
$$_{\hat{D},\mathbf{x}\in\mathbb{R}^n}\|\hat{D}-\tilde{D}\|_2^2$$

subject to $|f(\hat{D},\mathbf{x})-f^*| \leq \beta$ (b)
 $g_i(\hat{D},\mathbf{x}) \leq 0, i=1,\ldots,p$

Release \hat{D}

Properties

- : CBDP achieves ε-DP
 - By application of the privacy-preserving mechanism on D to calibrated noise, and composition
- **Efficiency**: When the constraint space is convex, CBDP runs in polynomial time in the size of the universe and number of constraints
- **Accuracy**: For convex problems, the optimal solution to the optimization model of CBDP satisfies:

$$\|x^* - c\|_{2,w} \le \|\tilde{c} - c\|_{2,w}$$

Properties

- Privacy: CBDP achieves generalized ε -Differential Privacy
 - By the properties of the (Polar) Laplace mechanism.

Accuracy: The optimal solution to the optimization model of CBDP satisfies:

$$\|\hat{S}^* - S\|_2 \le 2\|\tilde{S} - S\|_2$$

that is, it is at away from optimality by at most a factor of 2.

Geometrical intuition

- Let Q_1, Q_2, \ldots, Q_n a collection of queries.
- Let $\tilde{q}_1, \tilde{q}_2, \ldots, \tilde{q}_k$ be their private, noisy, answers.
- Constraint $\mathbb{C}(Q_1,Q_2,\ldots,Q_k)$ is satisfied (in all data sets) on the true query answers, but does not on noisy answers

Objective: Find x_1, x_2, \dots, x_k such that:

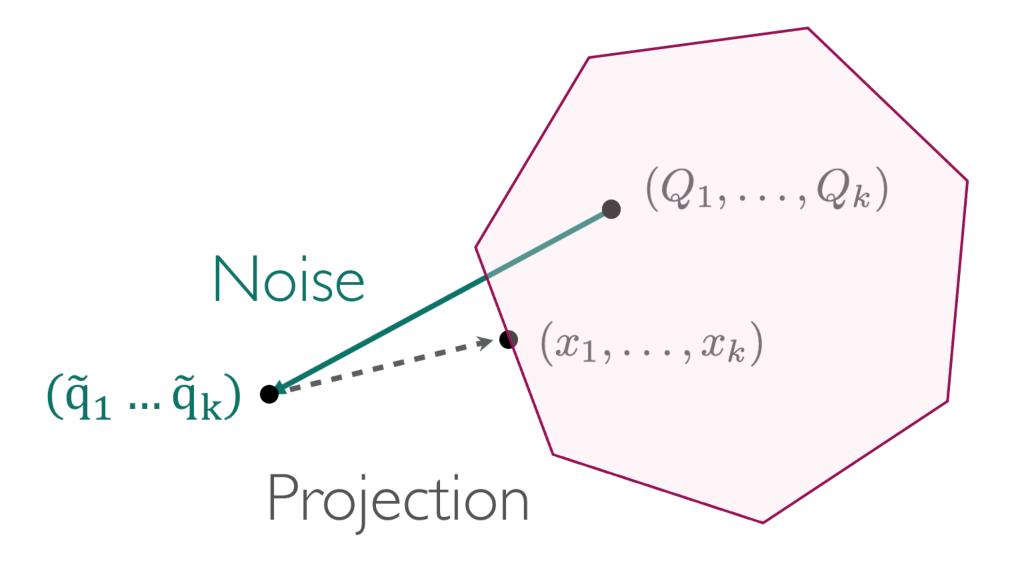
- I. Close to $\tilde{Q}_1, \tilde{Q}_2, \dots, \tilde{Q}_k$
- 2. Satisfy $\mathbb{C}(x_1, x_2, \dots, x_k)$

Geometrical intuition

• Consider a set of queries $\{Q_1, ..., Q_k\}$ with private answers $\tilde{q}_1, ..., \tilde{q}_k$

$$\min \sum_{i=1}^{k} (x_i - \tilde{q}_i)^2$$

s.t.:
$$\mathbb{C}(x_1, x_2, \dots, x_k)$$



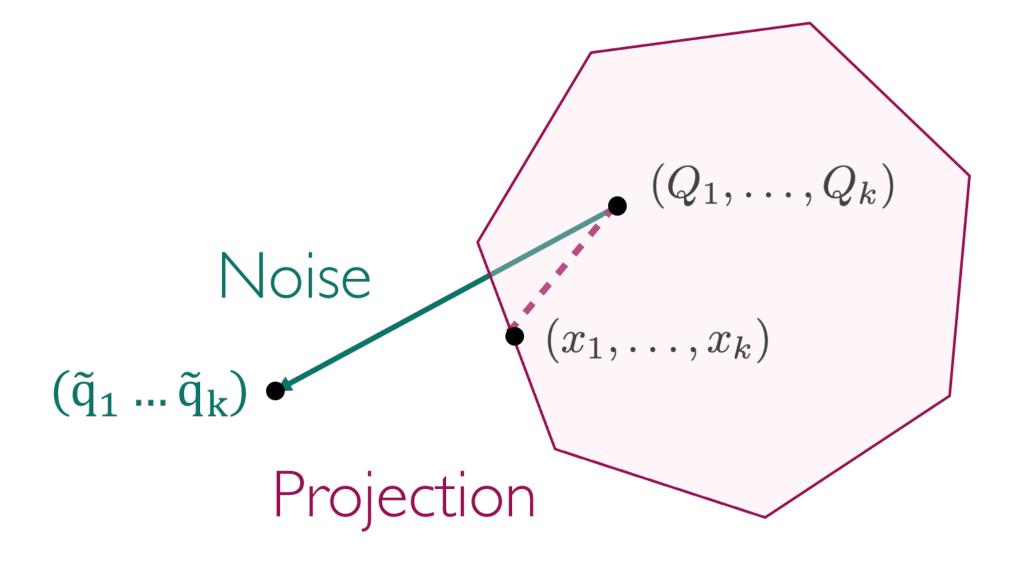
Space of outputs satisfying C

Geometrical intuition

• Consider a set of queries $\{Q_1, ..., Q_k\}$ with private answers $\tilde{q}_1, ..., \tilde{q}_k$

$$\min \sum_{i=1}^{k} (x_i - \tilde{q}_i)^2$$

s.t.:
$$\mathbb{C}(x_1, x_2, \ldots, x_k)$$



$$\|x - Q\|_2 \le \|\tilde{Q} - Q\|_2$$

When C forms a convex space

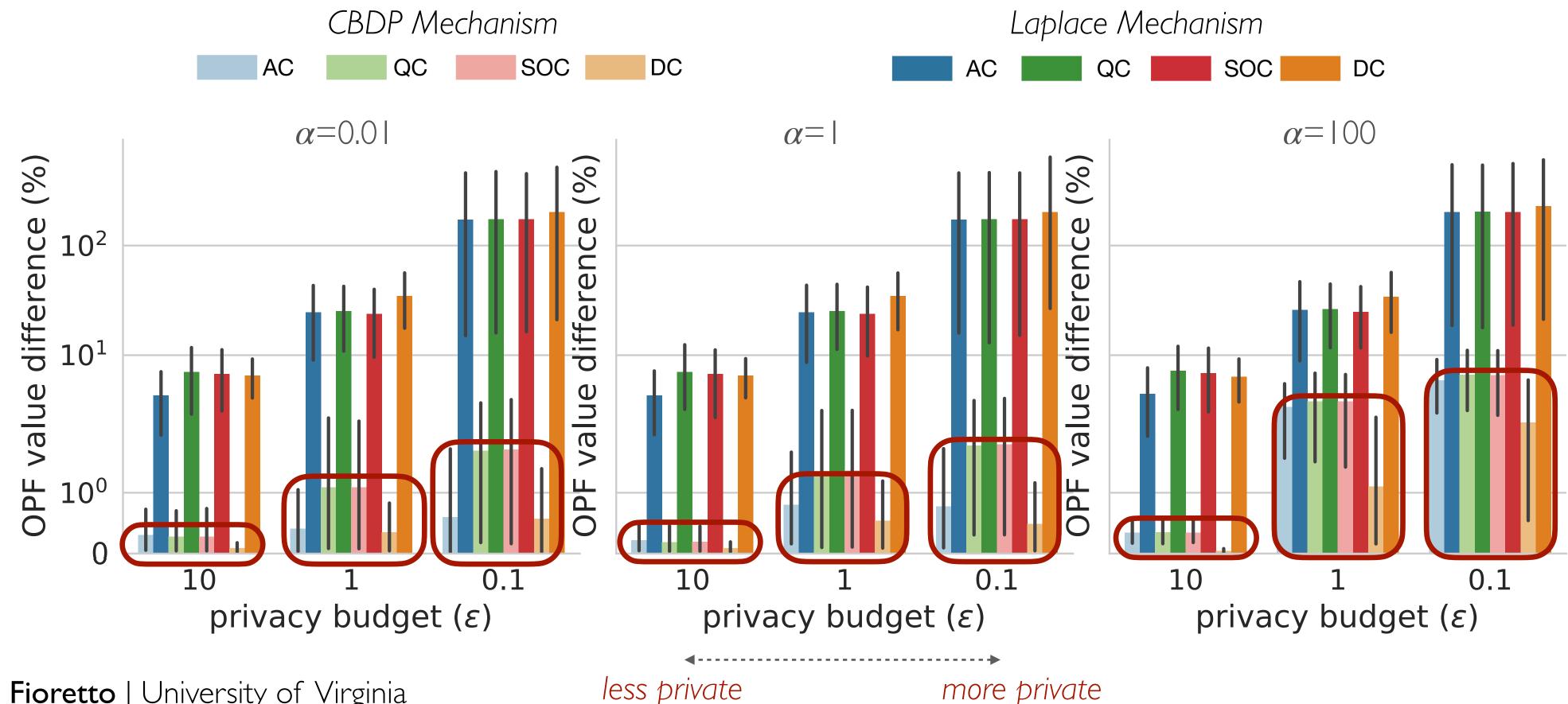
39

Protecting Loads

Analysis of the OPF

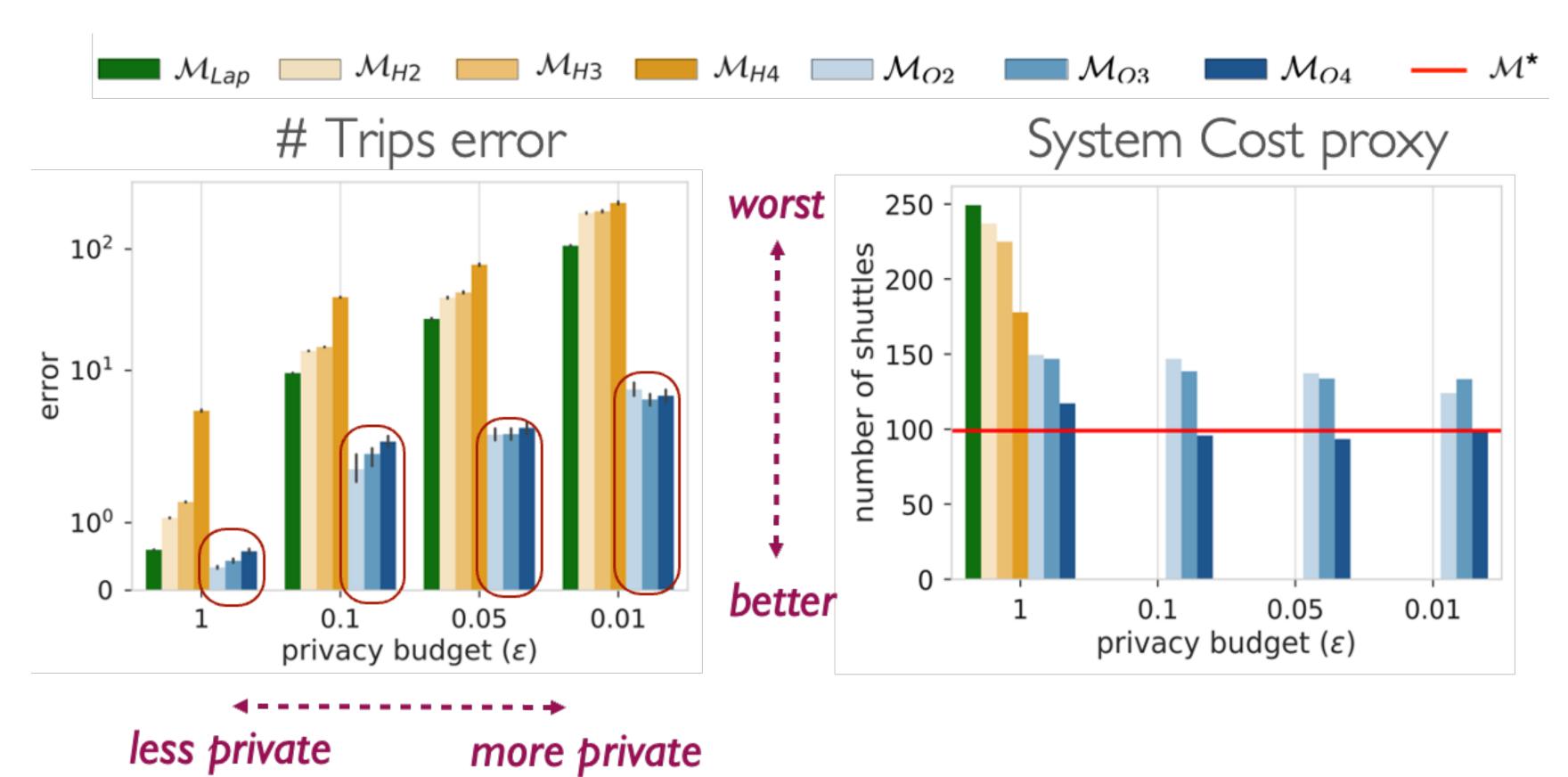
Summary:

- 1-2 order of magnitude improvements, for all ϵ and α
- Difference of OPF values between BiLevel-DP and original data is <10%



Summary of Results

Mobility



- <u>Features</u>: Total trips (2), Operating zones (3), Transit modes (4)
- <u>Baselines</u>: Laplace [Dwork:08], Hierarchical [Hay:10, Cormode:13]
 - Key results: >= I order magnitude improvement

I. Apply Geometrical Noise with parameter $\lambda = \frac{2L}{\epsilon}$

$$\tilde{\boldsymbol{n}}^r = \boldsymbol{n}^r + Geom\left(\frac{2L}{\epsilon}\right)^N$$

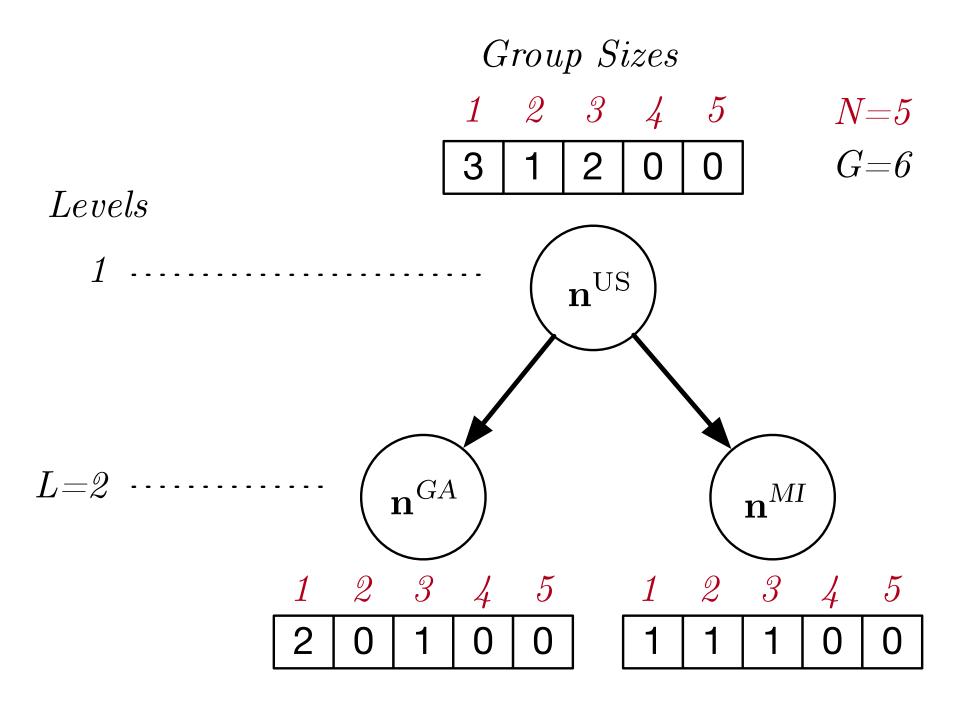
2. Postprocess output \tilde{n} to enforce consistency

$$\underset{\{\hat{\boldsymbol{n}}^r\}_{r\in\mathcal{R}}}{\text{minimize}} \sum_{r\in\mathcal{R}} \|\hat{\boldsymbol{n}}^r - \tilde{\boldsymbol{n}}^r\|_2^2$$
(H1)

s.t:
$$\sum_{s \in [N]} \hat{n}_s^r = G \ \forall r \in \mathcal{R}$$
 (H2)

$$\sum_{c \in ch(r)} \hat{n}_s^c = \hat{n}_s^r \quad \forall r \in \mathcal{R}, s \in [N] \quad (H3)$$

$$\hat{n}_s^r \in D_s^r \qquad \forall r \in \mathcal{R}, s \in [N] \quad (H4)$$



I. Apply Geometrical Noise with parameter $\lambda = \frac{2L}{\epsilon}$

$$\tilde{\boldsymbol{n}}^r = \boldsymbol{n}^r + Geom\left(\frac{2L}{\epsilon}\right)^N$$

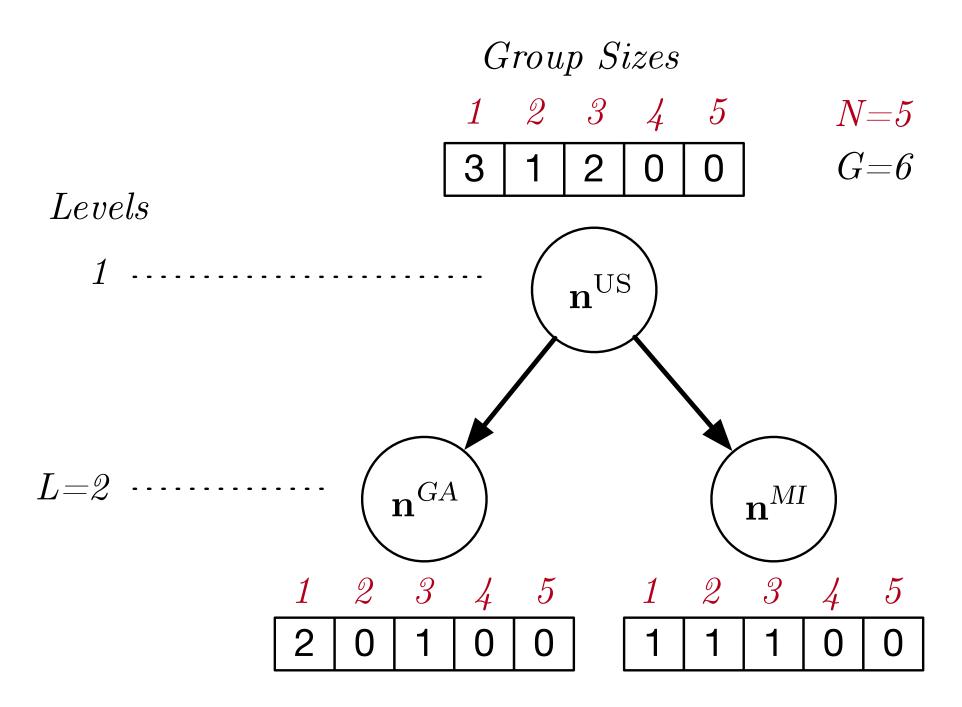
2. Postprocess output \tilde{n} to enforce consistency

$$\underset{\{\hat{\boldsymbol{n}}^r\}_{r\in\mathcal{R}}}{\text{minimize}} \sum_{r\in\mathcal{R}} \|\hat{\boldsymbol{n}}^r - \tilde{\boldsymbol{n}}^r\|_2^2 \qquad (H1)$$

s.t:
$$\sum_{s \in [N]} \hat{n}_s^r = G \ \forall r \in \mathcal{R}$$
 (H2)

$$\sum_{c \in ch(r)} \hat{n}_s^c = \hat{n}_s^r \quad \forall r \in \mathcal{R}, s \in [N] \quad (H3)$$

$$\hat{n}_s^r \in D_s^r \qquad \forall r \in \mathcal{R}, s \in [N] \quad (\text{H4})$$



I. Apply Geometrical Noise with parameter $\lambda = \frac{2L}{\epsilon}$

$$\tilde{\boldsymbol{n}}^r = \boldsymbol{n}^r + Geom\left(\frac{2L}{\epsilon}\right)^N$$

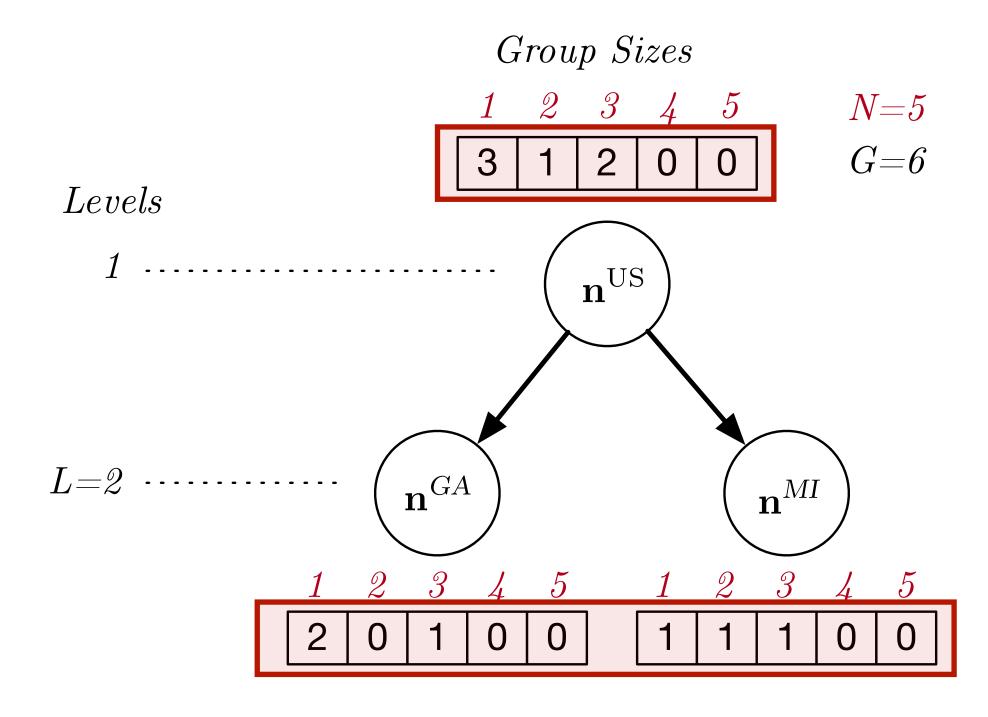
2. Postprocess output \tilde{n} to enforce consistency

$$\underset{\{\hat{\boldsymbol{n}}^r\}_{r\in\mathcal{R}}}{\text{minimize}} \sum_{r\in\mathcal{R}} \|\hat{\boldsymbol{n}}^r - \tilde{\boldsymbol{n}}^r\|_2^2$$
(H1)

s.t:
$$\sum_{s \in [N]} \hat{n}_s^r = G \ \forall r \in \mathcal{R}$$
 (H2)

$$\sum_{c \in ch(r)} \hat{n}_s^c = \hat{n}_s^r \quad \forall r \in \mathcal{R}, s \in [N] \quad (H3)$$

$$\hat{n}_s^r \in D_s^r \qquad \forall r \in \mathcal{R}, s \in [N] \quad (H4)$$



I. Apply Geometrical Noise with parameter $\lambda = \frac{2L}{\epsilon}$

$$\tilde{\boldsymbol{n}}^r = \boldsymbol{n}^r + Geom\left(\frac{2L}{\epsilon}\right)^N$$

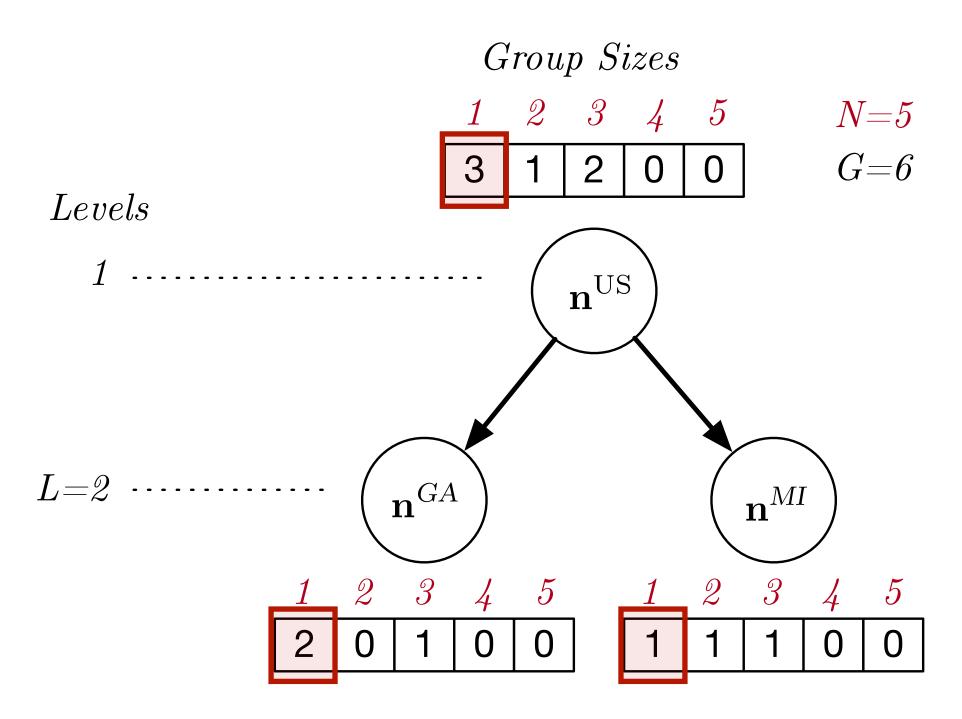
2. Postprocess output \tilde{n} to enforce consistency

$$\underset{\{\hat{\boldsymbol{n}}^r\}_{r\in\mathcal{R}}}{\text{minimize}} \sum_{r\in\mathcal{R}} \|\hat{\boldsymbol{n}}^r - \tilde{\boldsymbol{n}}^r\|_2^2$$
(H1)

s.t:
$$\sum_{s \in [N]} \hat{n}_s^r = G \ \forall r \in \mathcal{R}$$
 (H2)

$$\sum_{c \in ch(r)} \hat{n}_s^c = \hat{n}_s^r \quad \forall r \in \mathcal{R}, s \in [N]$$
 (H3)

$$\hat{n}_s^r \in D_s^r \qquad \forall r \in \mathcal{R}, s \in [N] \quad (H4)$$



2. Postprocess output \tilde{n} to enforce consistency

$$\underset{\{\hat{\boldsymbol{n}}^r\}_{r\in\mathcal{R}}}{\text{minimize}} \sum_{r\in\mathcal{R}} \|\hat{\boldsymbol{n}}^r - \tilde{\boldsymbol{n}}^r\|_2^2 \tag{H1}$$

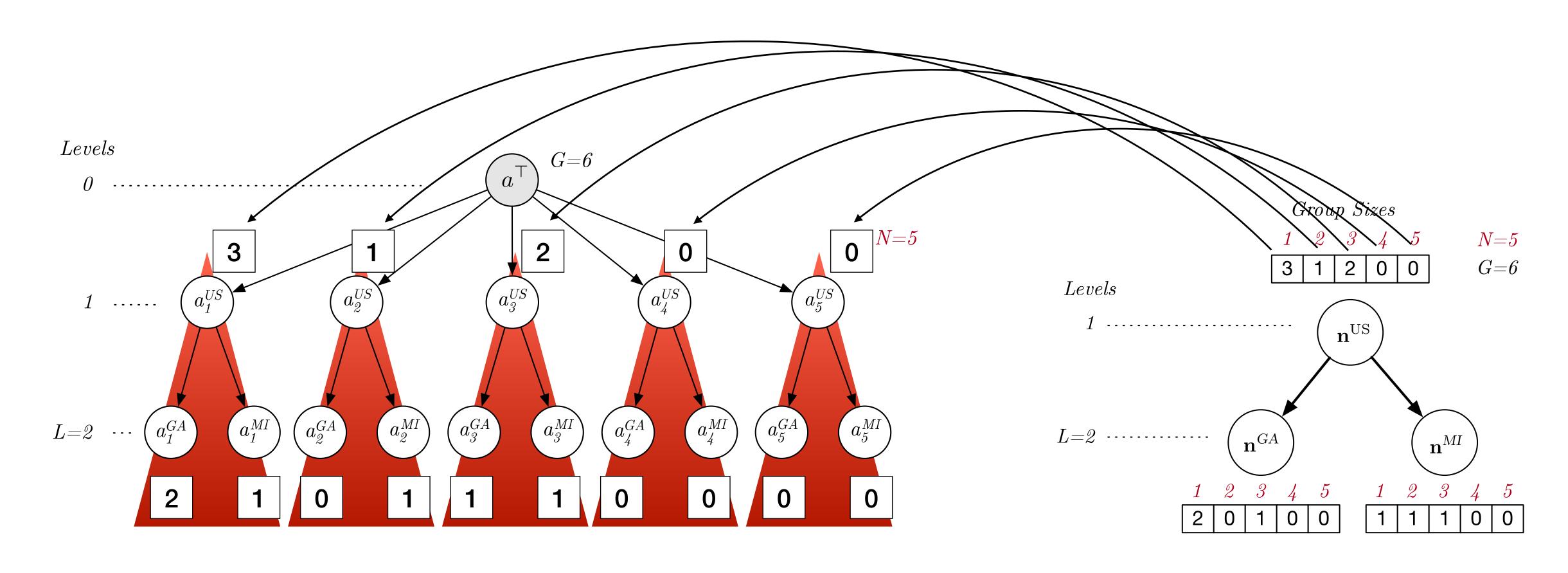
s.t:
$$\sum_{s \in [N]} \hat{n}_s^r = G \ \forall r \in \mathcal{R}$$
 (H2)

$$\sum_{c \in ch(r)} \hat{n}_s^c = \hat{n}_s^r \quad \forall r \in \mathcal{R}, s \in [N] \quad (H3)$$

$$(\hat{n}_s^r \in D_s^r) \quad \forall r \in \mathcal{R}, s \in [N] \quad (H4)$$

- Solving this QIP is intractable for the datasets of interest to the census bureau.
- Relax the integrality constraint.
- The resulting optimization problem becomes convex but presents two limitations:
 - I. Its final solution may violate the **consistency** and **faithfulness** conditions
 - 2. The mechanism is still too slow for very large problems!

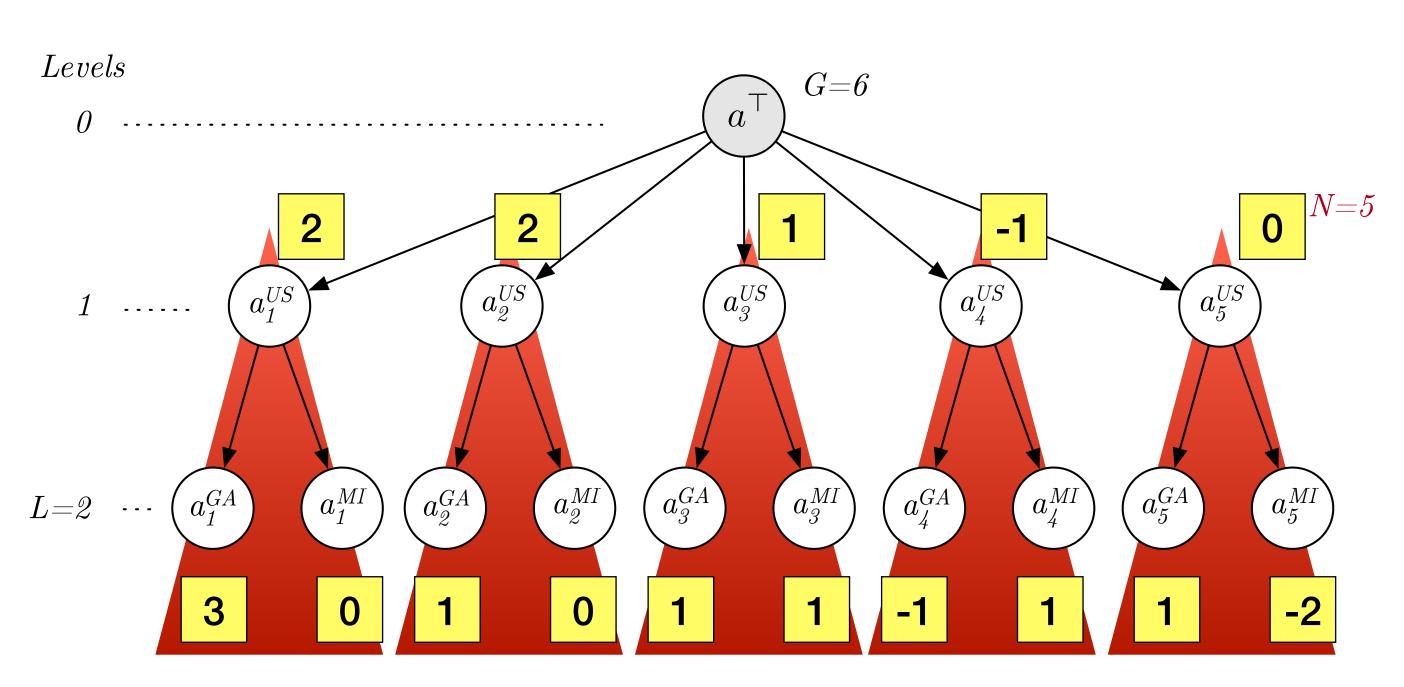
A Dynamic Programming Solution



independent subtrees

A Dynamic Programming Solution

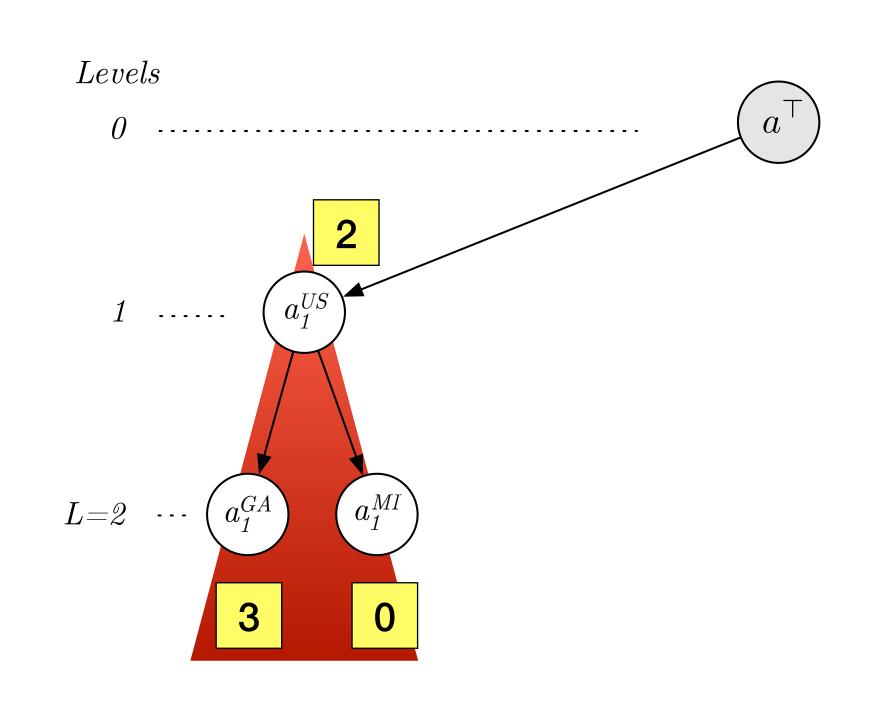
I. Apply Geometrical Noise with parameter
$$\lambda = \frac{2L}{\epsilon}$$



$$\tilde{\boldsymbol{n}}^r = \boldsymbol{n}^r + Geom\left(\frac{2L}{\epsilon}\right)^N$$

independent subtrees

A Dynamic Programming Solution



2. Bottom-up phase

- Find new, group sizes \hat{n}^r that satisfy the consistency properties.
- Each node of the tree, computes a table $\tau^r:D^r\to\mathbb{R}_+$ mapping values (group sizes) to costs.
- $\tau^r(v)$ is the optimal cost for \hat{n}^r in the subtree rooted at region ${\bf r}$ when $\hat{n}^r = v$
- The optimal cost for $\tau^r(v)$ can be computed from the cost table τ^c of region \mathbf{r} children $c \in ch(r)$

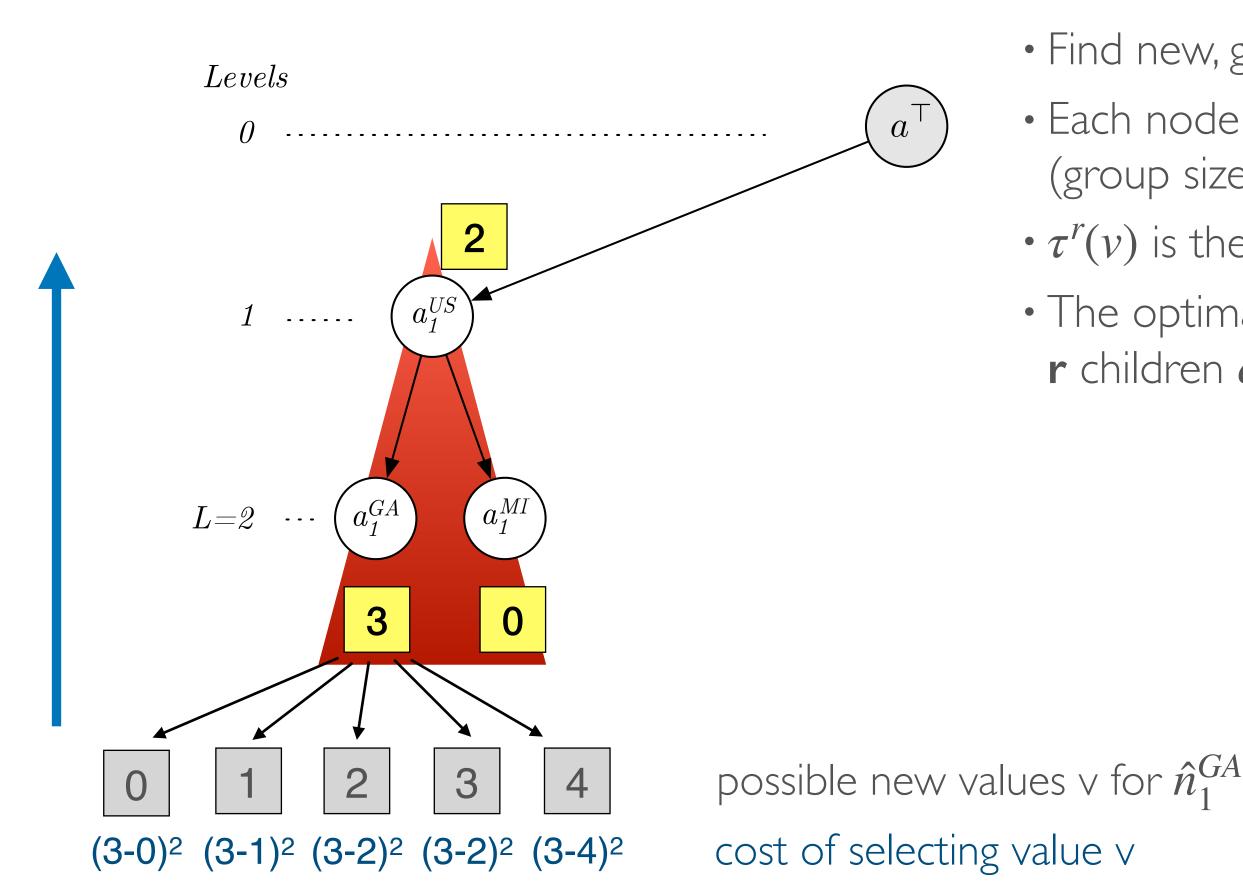
$$\boldsymbol{\tau}^r(v) = \left(v - \tilde{n}^r\right)^2 + \tag{d1}$$

$$\boldsymbol{\phi}^{r}(v) = \min_{\{x_c\}_{c \in ch(r)}} \sum_{c \in ch(r)} \boldsymbol{\tau}^{c}(x_c) \quad (d2)$$

s.t.
$$\sum_{c \in ch(r)} x_c = v \tag{d3}$$

$$x_c \in D^c \ \forall c \in ch(r) \ (d4)$$

A Dynamic Programming Solution



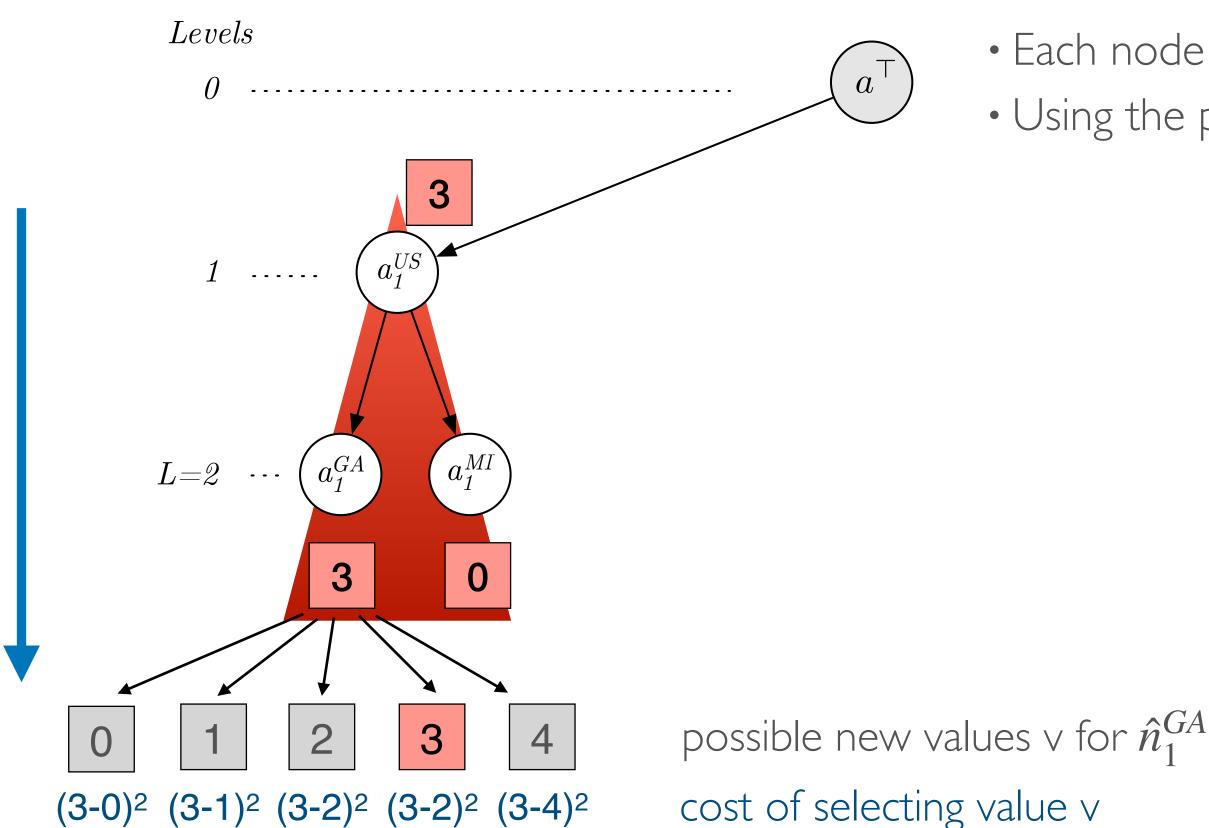
2. Bottom-up phase

- Find new, group sizes \hat{n}^r that satisfy the consistency properties.
- Each node of the tree, computes a table $\tau^r:D^r\to\mathbb{R}_+$ mapping values (group sizes) to costs.
- $\tau^r(v)$ is the optimal cost for \hat{n}^r in the subtree rooted at region ${\bf r}$ when $\hat{n}^r = v$
- The optimal cost for $\tau^r(v)$ can be computed from the cost table τ^c of region \mathbf{r} children $c \in ch(r)$

cost tables

v	$ au_1^{ ext{GA}}$	$ au_1^{ m MI}$	$ au_1^{ ext{US}}$
0	9	0	$4+\min(9+0)$
1	4	1	$1 + \min(9 + 1; 4 + 0)$
2	1	4	θ +min(0+4; 4+1; 1+0)
3	0	9	$1 + \min(0+0; 1+1; 4+4; 9+9)$
4	1	16	$4+\min(1+0; 0+1; 1+4;)$

A Dynamic Programming Solution



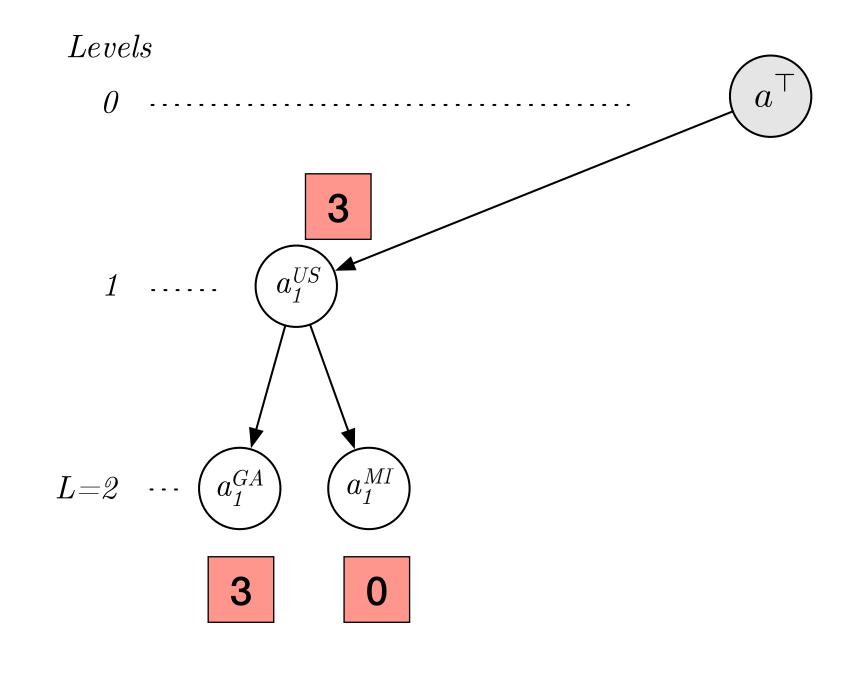
3. Top-down phase

- Each node select the value v that minimizes its cost table
- Using the parent value, choice each children repeats the process

$cost\ tables$

$oldsymbol{v}$	$ au_1^{ ext{GA}}$	$ au_1^{ m MI}$	$ au_1^{ ext{US}}$
0	9	0	$4+\min(9+0)$
1	4	1	$1 + \min(9 + 1; 4 + 0)$
2	1	4	θ +min(0+4; 4+1; 1+0)
3	0	9	$1 + \min(0+0; 1+1; 4+4; 9+9)$
4	1	16	$4+\min(1+0; 0+1; 1+4;)$

A Dynamic Programming Solution



The issue

• The construction of the data hierarchy requires solving $O(|R|N\bar{D})$ optimization problems, with $\bar{D} = \max_{s,r} |D_s^r|$ R = regions, s = groups sizes (1, 2, 3, ...)

$$\boldsymbol{\tau}^r(v) = \left(v - \tilde{n}^r\right)^2 + \tag{d1}$$

$$\phi^{r}(v) = \min_{\{x_c\}_{c \in ch(r)}} \sum_{c \in ch(r)} \tau^{c}(x_c) \quad (d2)$$

s.t.
$$\sum_{c \in ch(r)} x_c = v \tag{d3}$$

$$x_c \in D^c \ \forall c \in ch(r) \ (d4)$$

Exploiting the Cost Functions Structure

A Polynomial Time Mechanism

Main Result: The function ϕ_s^r used to compute the values $\tau_s^c(v)$ convex piecewise linear (CPWL)

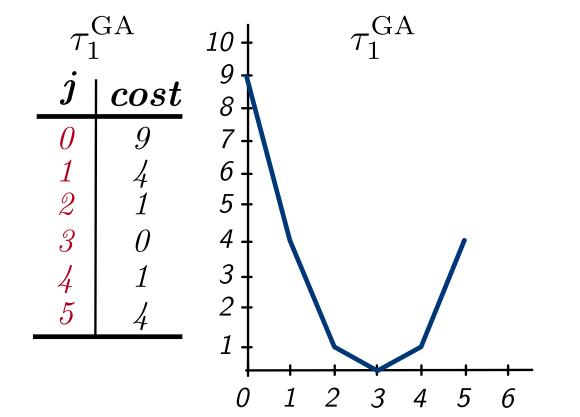
$$v_c^k = \begin{cases} v_c^{k-1} + 1 & \text{if } c = \operatorname{argmin}_c \boldsymbol{\tau}^c(v_c^{k-1} + 1) - \boldsymbol{\tau}^c(v_c^{k-1}) \\ v_c^{k-1} & \text{otherwise.} \end{cases}$$

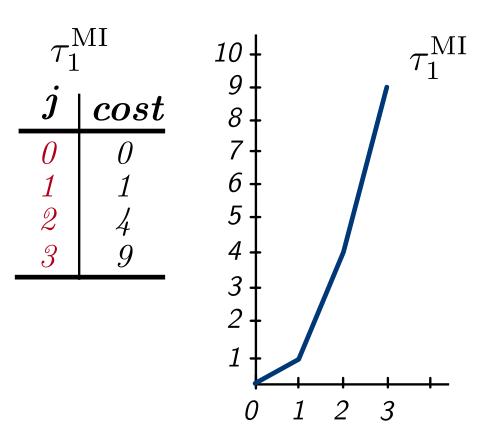
$$\boldsymbol{\tau}^{r}(v) = \left(v - \tilde{n}^{r}\right)^{2} + \tag{d1}$$

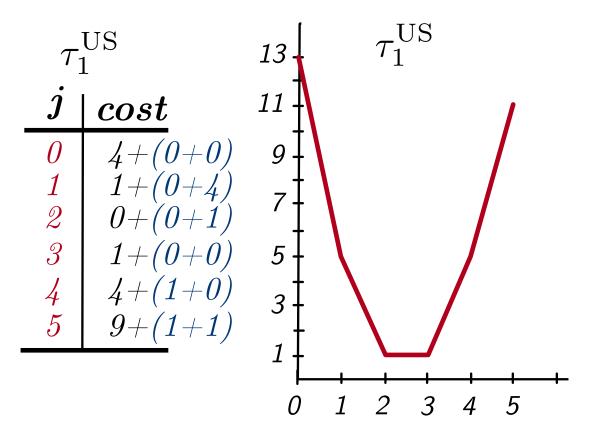
$$\boldsymbol{\phi}^{r}(v) = \min_{\{x_{c}\}_{c \in ch(r)}} \sum_{c \in ch(r)} \boldsymbol{\tau}^{c}(x_{c}) \tag{d2}$$

$$\text{s.t.} \sum_{c \in ch(r)} x_{c} = v \tag{d3}$$

$$x_{c} \in D^{c} \ \forall c \in ch(r) \tag{d4}$$





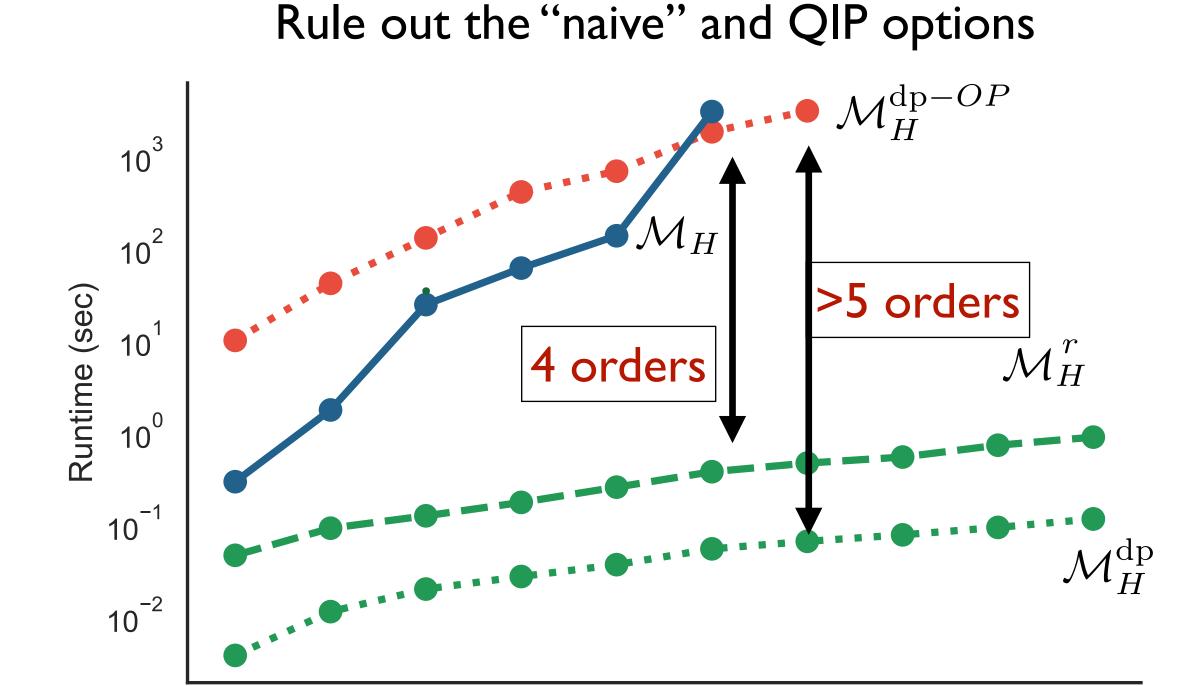


Corollary: The cost table function of each node of the tree is CPWL

Experimental Evaluation

Runtime

Main Result: Exploiting convexity and structure of the problem provides up to **2 order magnitude improvements** w.r.t. the relaxed QIP method



Number of Groups

10

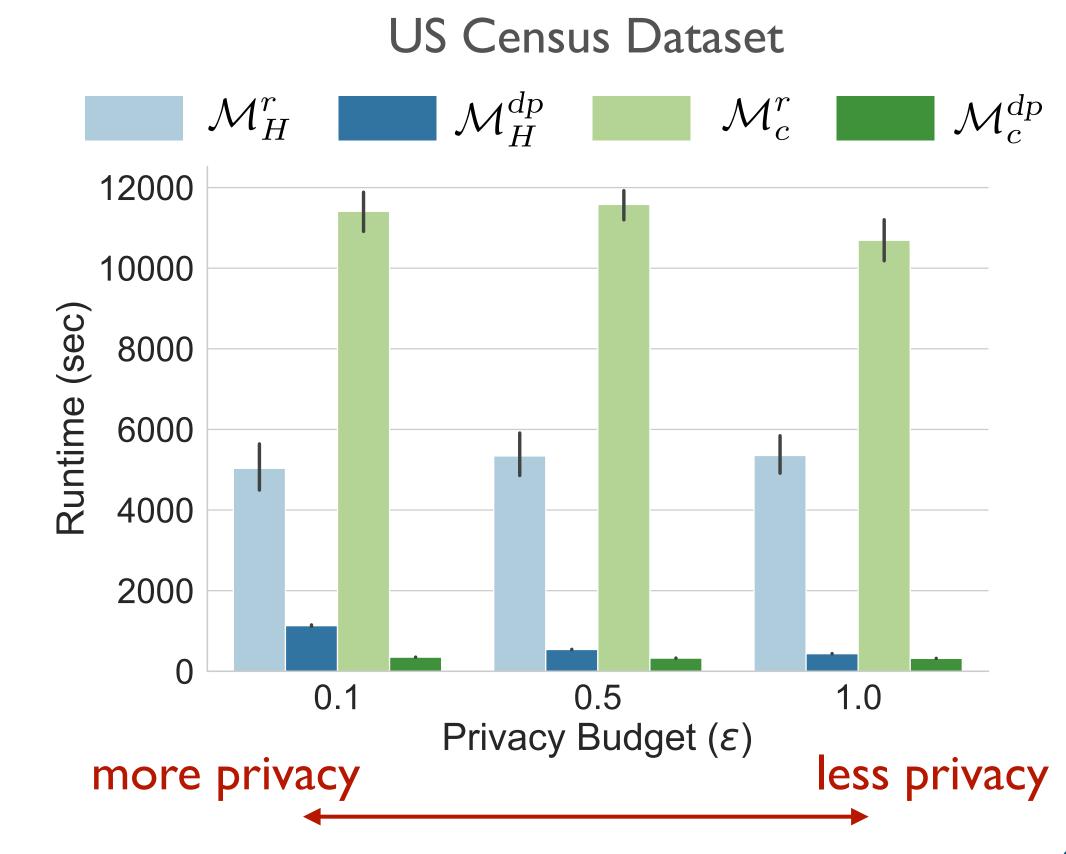
15

35

40

45

50



Discussion

A bit of quizzing:

- Can you explain the concept of 'ε' (epsilon) in Differential Privacy? How does changing its value affect privacy and data utility?
- What are some common mechanisms (like Laplace or Gaussian mechanisms) used to achieve Differential Privacy? How do they work?

Practical thinking:

- Discuss a real-world scenario where DP could be effectively applied. What challenges might arise in this implementation?
- How would you approach the trade-off between data utility and privacy when implementing DP in a large-scale public dataset?

Responsible use:

- What are the ethical implications of not using Differential Privacy in data-driven projects?
- Can DP always guarantee the protection of individual's data? Are there any scenarios where it might fail?
- If you had to argue against the use of DP, what points would you raise?
- How might advances in technology (like quantum computing) impact the effectiveness of Differential Privacy?

•

Discussion

Balancing Privacy and Public Good:

- In situations where AI can benefit public health or safety, how should the balance between individual privacy and the collective good be managed?
- Should there be exceptions to privacy rules for Al applications in critical areas like healthcare, criminal justice, or national security?

Consent and Awareness:

- How should informed consent be obtained or considered especially when data is used for Al training?
- What level of understanding should individuals have about Differential Privacy before their data is used? How can this be realistically achieved?

Transparency:

- Should organizations be required to disclose the use of DP in their AI systems?
- Who should be held accountable when an Al system, using differentially private data, makes an erroneous or harmful decision?

Long-term Effects and Society:

- What could be the long-term societal impacts of widespread adoption of Privacy in Al. Could it lead to a more privacyconscious culture or create new challenges?
- How might the evolution of AI technologies influence the future development and implementation of DP principles?

Responsible Al: Seminar on Fairness, Safety, Privacy and more

Thank you!

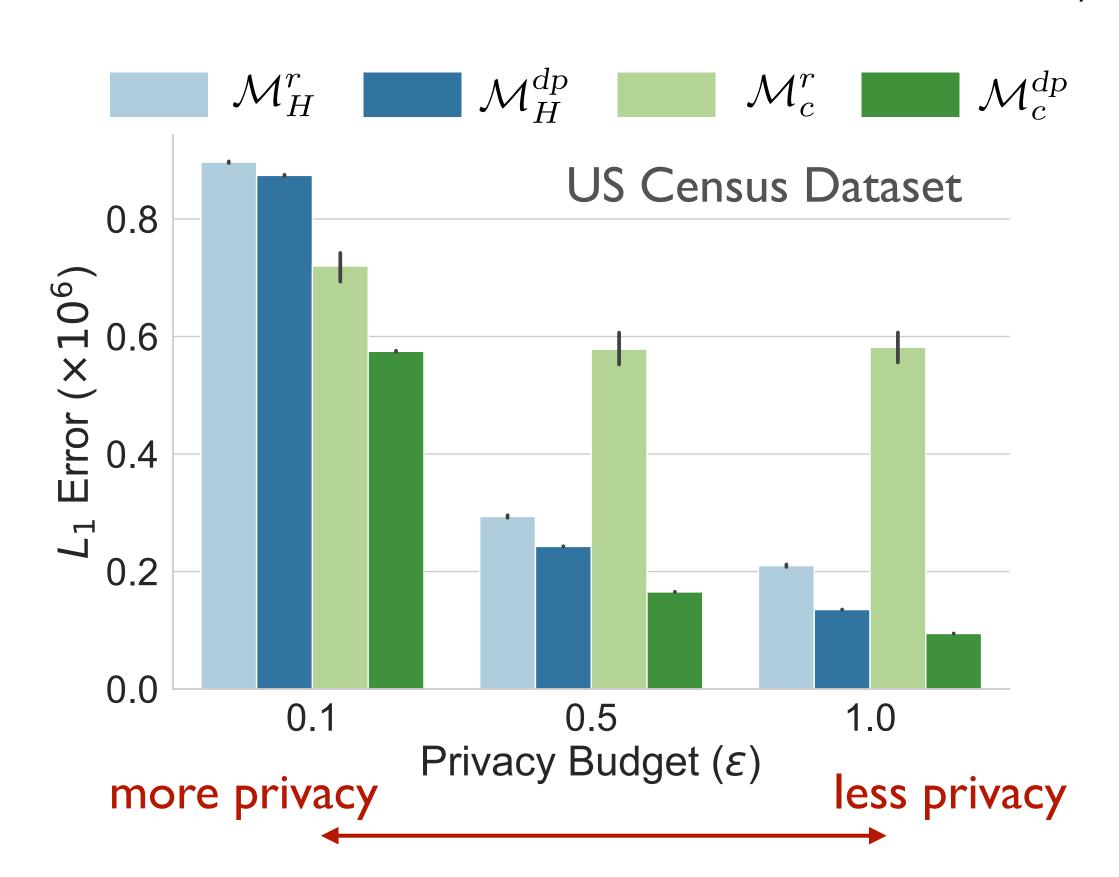
nandofioretto@gmail.com

@nandofioretto

Experimental Evaluation

Accuracy

Main Result: The CPWL-dynamic programming versions produces less errors than the QP counterparts violating no constraints



Taxi Data						ı	Census Data			
		L_1 E	errors (×	(10^4)	#CV	L_1 Er	$L_1 \text{ Errors } (\times 10^3)$			
ϵ	Alg	Lev 1	Lev 2	Lev 3		Lev 1	Lev 2	Lev 3		
0.1	\mathcal{M}_H^r	25.4	158.7	904.4	18206	40.3	54.3	802.1	1966	
	\mathcal{M}_H^{dp}	26.6	121.9	915.7	0	10.3	38.4	825.4	0	
	\mathcal{M}_c^r	47.9	153.2	551.6	19460	23.1	64.5	632.2	1715	
	\mathcal{M}_c^{dp}	19.9	65.6	644.3	0	0.9	23.2	550.6	0	
0.5	\mathcal{M}_H^r	8.6	81.2	364.2	18591	39.4	37.9	216.3	1990	
	\mathcal{M}_H^{dp}	5.5	31.0	408.9	0	2.4	9.4	230.8	0	
	\mathcal{M}_c^r	46.7	153.5	450.7	19531	23.1	61.0	494.2	1718	
	\mathcal{M}_c^{dp}	4.0	16.4	352.9	0	0.2	5.8	159.1	0	
1.0	$ \mathcal{M}_H^r $	7.7	77.2	279.0	18085	40.7	39.2	130.0	1989	
	\mathcal{M}_H^{dp}	3.1	19.8	328.5	0	1.2	5.1	128.8	0	
	\mathcal{M}_c^r	47.1	154.2	447.1	19706	24.1	63.0	494.5	1728	
	\mathcal{M}_c^{dp}	2.0	8.7	307.8	0	0.1	3.2	91.0	0	