Statistical Measures
of Fairness in Al

Eric Xie, Yagnik Panguluri, Anders Gyllenhoff, Caroline Gihlstorf



Agenda

Classification
e Overview
e Distance Metrics
e Fairness Metrics

Discussion on Fairness in Classification
Implementations of Fairness
e A new loss function based on a distribution difference metric
e Learning a distance metric and using intermediate representations

e Post processing for classification fairness

Discussion on Implementations of Fairness



Classification: Overview

Classification is the task of assigning labels to data points based on input features

It applies to both future outcomes and unknown past events
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Classification relies on patterns in data
that connect observed characteristics

(covariates X) to an outcome variable
(Y)

A classifier function f(X) predicts Y, the
estimated outcome
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Represent the population as a
probability distribution

Use SDT to develop a classifier that
makes predictions



What is Fairness in Classification?

Fairness in classification ensures that predictions do not systematically disadvantage individuals
based on sensitive attributes (e.g., race, gender, disability).

Discrimination is defined as disparities that are not justified by legitimate differences in the
population

Key Concepts Fairness Criteria
Many classification tasks use features X Independence: Decisions should not depend on
that may implicitly encode an individual's group membership

status in a protected category
Separation: Error rates should be equal across

We define A as a sensitive attribute (e.g. groups
race, gender). If a classifier decision
depends on A, it may be discriminatory Sufficiency: The model’s predictions should be

equally accurate for all groups



Constructing Fair Classification Tasks

Choose what
fairness means
in the context of
the classification

task

Identify the bias in
the data and
model
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Evaluate and
iterate and assess
using metrics like

AUC, disparity
scores, and
calibration checks

Reformulate as an
optimization
problem

Select a fairness
approach
(pre-processing,
in-processing,
post-processing)



Distance Metrics

Determine the “closeness” of two individuals in
some space to approximate how similar they are

Sometimes they are assumed (e.g., Dwork et al.,,
(2011)), other times they are computed explicitly
(e.g., Zemel et al,, (2013))




Fairness as a Linear Optimization Problem

e A standard method of feasibly deriving a fair model is by reformulating the problem as a
linear optimization problem
o  Simple model constraints
o Data

o



Defining Fairness Metrics

Class-Blindness:

e Applies a single threshold across all groups, removing the protected
attribute from the dataset

e This runs the risk of unfairness caused by redundant encodings
o Predicting protected class attributes from other features



Defining Fairness Metrics

Statistical/Demographic Parity:

Percentage of the population determines expected percentage of classification
outcomes

75% of

| 75% of label (
the population

classifications




Defining Fairness Metrics

Statistical/Demographic Parity: Does it work

Group Level: Yes

Individual Level: No

Example: companies may maliciously choose to interview people from a protected
group without the necessary qualifications to establish a negative track record for
people in the group (equal number of interviews, unequal treatment)



Defining Fairness Metrics

Equal Opportunity:
Within a protected attribute (A), those that deserve a positive classification (Y=1) have
equal correct prediction rates (y = 1).

Pr{?zvl |A=O,-Y=1}=Pr[?; 1 |A=1,Y=1}



Defining Fairness Metrics

Equalized Odds:

Adds an additional constraint onto “Equal Opportunity,” requiring equal incorrect
positive rates as well

Pr{iY=1|A=0,Y=y}=Pr{V=1|A=1,Y=p}, ye{0,1)



Discussion (Part 1) - 10 minutes

What does it mean to you to
implement fairness in classification
models?

Given the four aforementioned
fairness metrics, can you think of
scenarios where each would be
more/less effective?

Class-Blindness: Applies a single threshold
across all groups, removing the protected
attribute from the dataset
Statistical/Demographic Parity: Percentage
of the population determines expected
percentage of classification outcomes
Equal Opportunity: Within a protected
attribute (A), those that deserve a positive
classification (Y=1) have equal correct
prediction rates (y = 1).

Equalized Odds: Adds an additional
constraint onto “Equal Opportunity,”
requiring equal incorrect positive rates as
well



Implementations of Fairness

Two predominant branches for methods to achieve fairness

e Data massaging: modifying labels of data samples so that the proportions of the
positive labels are equal in both protected groups

e Regularization Strategy: adding a regularization term to the classification training
objects that quantify bias and discrimination, maximizing accuracy and minimizing
discrimination in models.

We will be discussing the later of the two.



Implementations of Fairness

Dwork et al., (2011):

1) Learn a mapping
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Individuals Distributions
over outputs




Implementations of Fairness

Dwork et al., (2011):

1) Learn a mapping
2) Define optimization
for fairness

d(x, y)
(x€S,y€T) Doo H
(assumed)

Individuals Distributions
over outputs

— Do(P,.0) = sup log (max { Fa) Q(a) })

Q(a)’ P(a)

(Dwork et al., (2011), Equation 6, page 5)



Implementations of Fairness

Dwork et al., (2011): Lipschitz
1) Learn a mapping co_nstramt on
2) Define optimization fairess
for fairness
- 3)  Minimize loss
(xES,y€ET) © subjectto Vx,yeV,: (3)
(assumed) VXeV: uy€A@A) 4)

Figure 1: The Fairness LP: Loss minimization subject to fairness constraint

(Dwork et al., (2011), Figure 1, page 5)

Individuals Distributions
over outputs



Implementations of Fairness

Dwork et al., (2011):

Bias:

biasp 4(S.7T) = max ps(0) — u7(0) (Dwork et al,, (2011), Equation 8, page 8)



Implementations of Fairness

Dwork et al., (2011):

Bias:

biasp 4(S.7T) dg max ps(0) — g7 (0) (Dwork etal, (2011), Equation 8, page 8)

Statistical Parity & Lipschitz Condition:

e A (D, d)-Lipschitz mapping entails statistical parity up to the bias value.
e Less stringent Lipschitz condition for dissimilar distributions often still entails statistical parity




Implementations of Fairness - Critical
Analysis

Dwork et al., (2011):
e Assume non-overlapping groups of individuals (unrealistic -
people can hold multiple protected identities at once)
e Distance metric is theoretical
o May need to account for bias in distance metrics
e \Work centers around a targeted advertising scenario - to what
extent is this ethical?



Implementations of Fairness - LFR

How can we derive our own distance metric?

Continuing with a regularization methodology, Zemel et al. establish
the Learning Fair Representations (LFR) framework



Implementations of Fairness - LFR

X not
member of
protected

group

Distance

d(Xn, Vi) = ||Xn — Vi||2

X*: member
of protected

group

Z, a multinomial RV, where each K
value is a intermediate “prototype”.
e v, isa vectorin the same space as x

Input Data x € X Classification



Implementations of Fairness - LFR

LFR Framework Overview, a discriminative clustering model:

1. Mapping the training data (X,) to some Z to satisfy statistical
PAMY bz — kjx* € X*) = P(Z = kix- € X~),Vk (1)

2. The mapping to the Z space retains information in X, except about
membership to the protected group

K
P(Z = k|x) = exp(—d(x,vx))/ 3 exp(—d(x,v;)) (2)

i=1

3. The new mapping from Xto Yisclosetof: X —» Y



Implementations of Fairness - LFR

Where Mn, . denotes the probability that data point x_maps to v,
M, = P(Z =k|x,) Vn,k (3)
Now have a learning system minimizing the objective
L=A,-L,+A;-L,+A,-L, (4)

where A | A , and Ay are hyper parameters tuned to balance the
tradeoffs between statistical parity (L ), mapping Z to be a good
description of X (L, ), and to maximize the accuracy of prediction y (Ly).



Implementations of Fairness - LFR

An important note:

N

K
Ly = Z —ynlogn — (1 — yn)log(1 —3,)  (10) Un = ZMn,kwk
n=1 k=1

yhat_is the prediction for y =1, based on marginalizing over each
prototype’s prediction for Y and weighted by their respective
probabilities.

D
d(xn7vk)a) = Zaz(xnz T vki)z (12)
i=1

(11)



Case Study - LFR

Metrics:
e Accuracy: Classification accuracy
e Discrimination: Bias with respect to
the sensitive feature in classification
e Consistency: Model classification
prediction for kNN(x)

LFR consistently achieves lowest levels of
discrimination, but maintains high accuracy

Min. Discrimination
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Figure 1. Results on test sets for the three datasets (Ger-
man, Adult, and Health), for two different model selec-
tion criteria: minimizing discrimination and maximizing
the difference between accuracy and discrimination.



Case Study - LFR

LFR achieves better individual
fairness on each dataset, rewarding
/’s preservation of information
about the features in X.

Models selected based on
discrimination.

" German -Adult — i-lealth

Figure 2. Individual fairness: The plot shows the consis-
tency of each model's classification decisions, based on the
y NN measure. Legend as in Figure 1.



Case Study - LFR

Measure protected group (S)
information in the model by building
a predictor to predict S from Z.

Optimize predictor to minimize
difference with actual S, and test

prediction for S = sAcc score.

sAcc is shift towards the lower
bound in all dataset.

Models selected based on delta.

Adult

Health

German

Figure 3. The plot shows the accuracy of predicting the
sensitive variable (sAcc) for the different datasets. Raw in-
volves predictions directly from all input dimensions except
for S, while Proto involves predictions from the learmed fair
representations.



Implementations of Fairness

Post-processing approaches can avoid altering the model training process

e Hardt et al. explore post-hoc model constraints satisfied by modifying the Bayes
threshold

e Select an optimal model that satisfies TPR,_, =TPR,_,,and FPR,_, =FPR,

A=0’
For equal odds, result lies For equal opportunity, results lie
1.0 below all ROC curves. 1000 the same horizontal line

B Achievable region (A=0)
[ Achievable region (A=1)
B Overlap

+ ResultforY=Y
X ResultforY=1-Y
% Equal-odds optimum
@® Equal opportunity (A=0)
@® Equal opportunity (A=1)
080 032 07 05 08 Lo 08007 07 o5 08 Lo
Pr[V=1|A,Y=0] PrlY=1|A,Y=0]

Figure 1: Finding the optimal equalized odds predictor (left), and equal opportunity predictor
(right).



Implementations of Fairness

e The cost of implementing this fairness method scales linearly with the
Kolmogorov distance d

e The distance between the constrained ROC curve and the optimum is bounded
by dv/(2) per metric (2dy/(2) for equalized odds)

EL(Y,Y) <EE(Y',Y)+2V2-dg(R,R")



Case Study (FICO Credit Scores)

These metrics are applied in a case study regarding loan profitability, with race as the
protected attribute

Maximum Profit: Maximizes profits regardless of fairness
e Race-blind: Applies a single threshold across the entire dataset, removing the
race attribute.
e Demographic Parity: Each racial group receives loans at equal rates
Equal Opportunity: TPR, . =TPR,
Equalized Odds: TPR, _ = TPR,_jand FPR,_, =FPR,



Case Study (FICO Credit Scores)

Maximum Profit: 82% non-default rate overall, representing the optimal Bayes
classifier performance

e Race-blind: 99.3% of the Maximum
e Equal Opportunity: 92.8%
e Equalized Odds: 80.2%

e Demographic Parity: 69.8%



Case Study (FICO Credit Scores)

Under the race-blind approach, Black non-defaulters are significantly less likely

to qualify for loans compared to White or Asian applicants.
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Discussion (Part 1) - 20 minutes

If you were in charge of selecting the
classification model, which method would

you choose?

e If you were an investor selecting
between companies that
implemented each type of model,
would your decision change?

Disregarding performance, which metric
seems the most fair to you?

Is it fair to have differing thresholds based on
protected class membership?

e |s it more fair to have equivalent
thresholds, even if it may be more
difficult for some groups to reach these
thresholds given systemic issues

Do you think it is possible to fully quantify
fairness in classification? Why or why not?



References

Barocas, Solon, Moritz Hardt, and Arvind Narayanan. “Fairness and Machine Learning:
Limitations and Opportunities.” MIT Press, 2023.

Dwork, Cynthia, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Rich Zemel. “Fairness
Through Awareness,” 2011. https://arxiv.org/abs/1104.3913.

Hardt, Moritz, Eric Price, and Nathan Srebro. “Equality of Opportunity in Supervised
Learning,” 2016. https://arxiv.org/abs/1610.02413.

Zemel, Richard, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork. “Learning Fair
Representations.” In Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28, llI-325-111-333. ICML'13. Atlanta, GA, USA:
JMLR.org, 2013.



Appendix

In order to achieve statistical parity, we want to ensure
Eqn. 1, which can be estimated using the training data
as:

M} = Mg, Yk (5)

1
M} =Exex+P(Z=klx) == Y Mux (6)
|X0 I +
neXy
and M,  is defined similarly.
Hence the first term in the objective is:

K

L. =) |Mf - M| (7)
=1

The second term constrains the mapping to Z to be
a good description of X. We quantify the amount
of information lost in the new representation using a
simple squared-error measure:

N
Lx - Z(xn = *ﬂ)2 (8)
n=1

where %,, are the reconstructions of x,, from Z:
K
Rn = Maivi 9
k=1

These first two terms encourage the system to encode

all information in the input attributes except for those
that can lead to biased decisions.

The final term requires that the prediction of y is as
accurate as possible:

N
L,= z —ynloggn — (1 — yn) log(1 — §n) (10)

n=1

Here 3, is the prediction for y,,, based on marginalizing
over each prototype’s prediction for Y, weighted by
their respective probabilities P(Z = k|x,,):

K
gn — ZMn,kwk (11)

k=1



Appendix

Tested framework with four models (each hyperparameter
tuned).

1. Unregularized Logistic Regression (LR) - baseline.

2. Regularized Logistic Regression (RLR) - (Kamishima
et al., 2011)

3.  The Fair Naive Bayes (FNB) - four variants (Kamiran
& Calders, 2009) of FNB for ranking and classification
phases.

4. LFR-L-BFGS used to minimize the fairness
optimization.

e Accuracy: measures the accuracy of the model

classification prediction:

I\'
1 X

yAecc =1~ FZL!;,, - ¥n| (13)

n=1
Discrimination: measures the bias with respect

to the sensitive feature S in the classification:

Z:n.:.,-l -l}" = Zn.s,.-(l g"
Zn.sn—l 1 Zn;n,.—() 1

This is a form of statistical parity, applied to the
classification decisions, measuring the difference
in the proportion of positive classifications of indi-
viduals in the protected and unprotected groups.

| (14)

yDiscrim = |

Consistency: compares a model’s classification
prediction of a given data item x to its k-nearest
neighbors, kNN(x):
1
Ry, 0 oo .
y}\ N=1 Nk ; Iyn Z yjl (15)

FEENN(xn)



