
Adversarial
Robustness

Eric Xie, Yagnik Panguluri, Anders Gyllenhoff, Caroline Gihlstorf

Agenda

● What are Adversarial Examples?
○ Why do they occur?

● Adversarial Attacks
○ Case analysis
○ Implementations extending into the real world

● Defenses against Adversarial Examples
● Alternative Perspectives on Adversarial Robustness

What Are Adversarial Examples?

Examples (e.g., images) perturbed such that they differ minimally from the original example
(humans can’t perceive the difference) but differ enough to make a classifier assign them the
wrong label.

(Goodfellow et al., (2015), Figure 1, page 3)

Intriguing Properties of
Neural Networks

Interpreting Properties of Neural
Networks

● Often difficult to interpret their properties and mechanisms of decision-making
● Traditionally, computer vision approaches have sought to interpret individual hidden

units by finding images that maximize the activation of a specific unit, assuming each
unit captures a distinct semantic feature.
○ Intriguing Properties of Neural Network, challenges this on the heels of AlexNet (2012)

Unit Analysis

The visual inspection of images x' can be described:

● I: hold out set of images
● ei: natural basis vector of the ith hidden unit

Compared performance between natural basis vector and a random basis vector v ∈ Rm

Unit Analysis

Tested on MNIST & AlexNet

● natural basis is no better than a
random basis for inspecting
properties of activation layers

● overall space of activations contains
the semantic information

● Little practical utility except confirm
assumptions on higher level
complexity of representations

Adversarial Attacks

Existence of Adversarial Examples

Output layer of a neural network = highly nonlinear function of the input

● Local generalization: The model assigns high probabilities to small perturbations of
training data points … slightly change an image should still predict the same class.

● Non-local generalization: The model can recognize objects in different contexts even if
those regions of input space are far from the training examples.

Does smoothness assumption regarding local generalization hold? Can tiny perturbations
fool deep neural networks?

Adversarial Example Generation

Let f:Rm→1,…,k be a classifier that maps an input image x ∈ Rm (represented as a pixel
vector) to a discrete set of labels, where f is assumed to have a continuous loss function.

Goal: For a given image x and a target label l∈{1,…,k}, find a perturbation r∈Rm s.t. x+r is
classified as l (targeted misclassification) while remaining in the valid pixel range.

Challenging optimization (nonconvex), but can be approximated using a penalty function and
a box-constrained L-BFGS optimizer

Last column: Average minimum distortion necessary to reach 0% accuracy on training set

Columns: show the error (proportion of samples misclassified) on the distorted training sets
for different models

Cross-Model Generalization

Cross-Training-Set Generalization

Spectral Analysis of Instability

Lipschitz constraint used at each layer, which measures how much the layer's output can
change relative to its input, to examine the stability of a network

● Results show that instabilities can arise as early as the first convolutional layer, with
some layers having significantly higher bounds than others.

● Can penalizing the Lipschitz bounds during training could improve network stability?

How do we defend against adversarial examples and increase model stability?

Discussion

● Given that models will always have some finite amount of computational power, is it
ever possible to have an accurate model that is completely immune to adversarial
examples?

● Does the existence of adversarial examples expose a fundamental flaw in deep
learning?

Case Analysis: Designing
Adversaries against
Defensive Distillation

Defensive Distillation - A False Sense of
Security

What is Defensive Distillation?

● A method to increase robustness by
training a model on softened labels

● Claimed to reduce attack success rate
from 95% to 0.5%

Distance Metrics

● L0 distance measures the number of coordinates i
such that xi ≠ x’i. Thus, the L0 distance corresponds
to the number of pixels that have been altered in
an image

● L2 distance measures the standard Euclidean
(RMS) distance between x and x’. The L2 distance
can remain small when there are many small
changes to many pixels.

● Linf distance measures the maximum change to
any of the coordinates.

There are three widely-used distance metrics in the literature for generating adversarial examples, all of
which are Lp norms.

Adversarial Attacks

● L0 Attack - Finds the minimum number of pixels that must be changed to induce
misclassification, making changes as sparse as possible

● L2 Attack - Creates small but distributed perturbations that are imperceptible to
humans but shift the model’s prediction

● Linf Attack - Ensures that no individual pixel is changed by more than a certain
threshold, often leading to subtle but widespread changes

Different attack methods exploit different weaknesses in neural networks, but no single
defense can protect against all distance-based attacks.

Experimental Setup
● Models trained on MNIST and

CIFAR-10
● MNIST achieved 99.5% accuracy

and CIFAR achieved 80% accuracy
● Pre-trained Inception v3 network

with 96% top-5 accuracy

Experimental Results

Attack Evaluation and Comparison

● Comparison Against Prior Attacks
○ Re-implementation of DeepFool, FGSM, Iterative Gradient Sign, and JSMA
○ New attacks outperform previous methods in all three distance metrics
○ JSMA fails on ImageNet due to computational cost

● Success Rates Across Datasets
○ MNIST and CIFAR - 100% success for all attack methods
○ ImageNet - The Linf attack can change an image’s classification by flipping the lowest bit of

each pixel
○ L0 and L2 attacks require 2x to 10x fewer modifications than previous attacks

Visualization of Attacks

Role of Transferability

● Even if a model is trained against adversarial attacks, adversarial examples often
remain effective on similar models

● High-confidence adversarial examples (crafted to be misclassified with high certainty)
bypass distillation defenses

● Any proposed defense must prove it can break transferability

Why Do These Attacks Work?

● The Local Linearity Hypothesis
○ Neural networks are highly non-linear but behave linearly in small regions

● Adversarial perturbations scale with dimensionality
○ Small, imperceptible changes in high-dimensional spaces remain effective

Adversarial robustness cannot rely solely on distillation

Real-World Adversarial
Examples

Adversarial
Image

Classification
model Output Label

VS

Camera; other
model sensors

Adversarial
Image

Classification
model Output Label

Image-to-Model Pipelines Can Differ

Research Pipeline:

Generate
adversarial

images

Apply
real-world

transformations

Measure
adversarial

image
retention after
transformation

Research Pipeline:

Generate
adversarial

images

Apply
real-world

transformations

Measure
adversarial

image
retention after
transformation

Generate Adversarial Images

Fast Method: maximize cost of true label

(Kurakin et al., (2017), page 4)

Basic Iterative Method: maximize cost of true label over multiple iterations

(Kurakin et al., (2017), page 4)

Iterative Least-Likely Class Method: minimize cost of least likely label over multiple iterations

(Kurakin et al., (2017), page 5)

Generate Adversarial Images

Least likely class iterative
method performs best
wrt reducing model
accuracy

(Kurakin et al., (2017), Figure 2, page 5)

Research Pipeline:

Generate
adversarial

images

Apply
real-world

transformations

Measure
adversarial

image
retention after
transformation

Apply Real-World Transformations

● Print photos of adversarial
and non-adversarial images

● Take photos of these
printouts

● Input photos into the
classification model

(Kurakin et al., (2017), Figure 3, page 6)

Experiment 1 - Photography Transformations:

Apply Real-World Transformations

● 2 Experimental Scenarios:

○ Test on random set of examples

○ Test on a select set of examples: model correctly classifies non-adversarial images
but misclassifies adversarial images

Experiment 1 - Photography Transformations:

Apply Real-World Transformations

Experiment 2 - Additional Transformations:

● Test on additional transformations: brightness, contrast, blur, noise, and JPEG encoding

Research Pipeline:

Generate
adversarial

images

Apply
real-world

transformations

Measure
adversarial

image
retention after
transformation

Measure Adversarial Image Retention
After Transformation

Destruction rate (d): measures how many adversarial images lose their adversarial nature after a
transformation (i.e., the classifier gets them right after the transformation)

(Kurakin et al., (2017), Equation 1, page 6)

Results - Photographed Images

● Fast Generation method lost the fewest adversarial examples

● Destruction rate was sometimes lower for randomly sampled images

● Randomly selected images from the basic iterative and iterative least-likely class methods
did better at remaining adversarial than adversarially cherry-picked images

Results - Other
Transformations

● Fast Generation method lost the fewest
adversarial examples

● Most effective transformations: Gaussian
blur, Gaussian noise, and JPEG encoding

● Takeaway: adversarial examples are not
absent from real-world settings

(Kurakin et al., (2017), Figure 6, page 14)

Transferability to Another Model

http://www.youtube.com/watch?v=zQ_uMenoBCk

Discussion
● Besides taking photos of printed images and using the other adjustments (e.g., brightness/contrast/noise, etc)

mentioned in the presentation, what other “real-world transformations” can you think of applying to
adversarial examples (either in computer vision or in another domain entirely)?

● Although some adversarial examples are classified correctly after going through real-world transformations,
others still cause the classifier to misclassify them. Do you think this could be attributed simply to
randomness or could there be a shared property of these image that make them particularly robust to
real-world transformations?

● Given that adversarial examples can successfully fool neural networks across multiple architectures, what
are some limitations of current deep learning models that make them so vulnerable, and do you think true
adversarial robustness is possible, or is this an inherent flaw of neural networks?

Defending Against
Adversarial Examples

A Linear Explanation of Adversarial
Examples

Neural networks are non linear, but their architectural choices (ReLUs, LSTMs, maxout units)
prioritize linear like behavior to ease optimization → Can craft adversarial perturbations via
linear approximations

● Input features have limited precision (e.g., 8 bits/pixel)
● Perturbations smaller than this precision threshold ∣∣η∣∣∞<ϵ should be ignored, but, in

high dimensions, small, coordinated perturbations aligned with the model’s weight
vectors and amplify linearly across features.

○ dot product w⊤η grows proportionally to the dimensionality

Fast Gradient Sign Method

Adversarial examples are generated via:

η=ϵ⋅sign(∇xJ(θ,x,y))

where

● θ: parameters of the model
● x: input
● y: targets associated with x
● ϵ: Perturbation magnitude
● ∇xJ: Gradient of the loss with

respect to the input. Effectiveness of Fast Gradient Sign Method on Different Models

Why does this work?

Deep networks can theoretically resist adversarial examples via the universal approximator
theorem, but standard training fails to enforce it.

Can instead use FGSM as an effective regularizer, continually updating the supply of
adversarial examples:

~J(θ,x,y)=αJ(θ,x,y)+(1−α)J(θ,x+η,y)

What about the model learning how adversaries will react to changes in weights?

Effectiveness

Robustness Impact with Adversarial Training Robustness of Alternative Adversarial Training Methods vs FGSM Samples

A Different Understanding
of Adversarial Examples
(Features, not bugs)

Discussion

Do models and humans rely on the same types of features to classify
images?

An Alternate Perspective of Robustness

Robust features: Recognizable to humans
Non-robust features: Highly informative for a model, but imperceptible to humans

● Can features within the data that are useful for models but not humans be extracted
and analyzed independently?

● Classifiers are trained to identify features within the data that will generalize across
members in each class.

Robust vs Non-Robust Separation

If we can disentangle robust and non-robust features within the dataset, we should expect:

● Training on robust features gives some level of adversarial robustness
● Training on non-robust features still retains predictive utility

Robust Dataset

Remove all predictive non-robust features
from each input

● Take an adversarially trained
model’s outputs for a given input

● Adjust a randomly selected
non-correlated image until the adv.
trained model’s output matches

Non-Robust
Dataset

Remove all predictive robust features
from each input

● Switch the label of each input
● Add adversarial perturbations until

a standard model predicts the new
label

Robust vs
Non-Robust

● Training on the robust dataset gives
some level of adversarial
robustness

● Training on the non-robust dataset
actually gives higher accuracy on
the test set

Suppose there is a distinction between robust and non-robust features within the data, what
does this tell us?

● What happens to the model when it learns robust vs non-robust features?

Through this lens, we can better analyze model robustness and behavior with respect to
adversarial examples

Why Does This Matter?

Are Adversarial Examples always Features?

● Dataset containing only robust features (black and white) with added:
○ Random noise
○ Label noise

● With a robust linear classifier, a significant portion of each sample can be altered
without affecting classification (𝜖 = 0.9)

● With a deep neural network, 𝜖 = 0.01 is enough to flip almost all labels

Adversarial Example Transferability

Non-robust features are inherent to the underlying data distribution

● Regardless of the model size/architecture, it is possible for models to simply learn the
same useful (non-robust) features as each other

Discussion

● Should we continue to use non-robust features for our predictions?
○ Predictive power vs robustness and interpretability

● How does the separation between robust and non-robust features affect biases within
the model?

○ If a model classifies only using robust features, does this remove subtleties
essential for utility with respect to underrepresented groups?

○ If a model classifies using non-robust features, will there be
human-unintelligible biases within the predictions as well?

Thank You!

References

Carlini, Nicholas, and David Wagner. “Towards Evaluating the Robustness of Neural Networks,” 2017.
https://arxiv.org/abs/1608.04644.

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing Adversarial Examples,” 2015.
https://arxiv.org/abs/1412.6572.

Ilyas, Andrew, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. “Adversarial Examples Are
Not Bugs, They Are Features,” 2019. https://arxiv.org/abs/1905.02175.

Kurakin, Alexey, Ian Goodfellow, and Samy Bengio. “Adversarial Examples in the Physical World,” 2017.
https://arxiv.org/abs/1607.02533.

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. “Intriguing
Properties of Neural Networks,” 2014. https://arxiv.org/abs/1312.6199.

Appendix

Adv Training vs Weight Decay

Adv Training more effective than weight decay

● For logistic regression P(y=1)=σ(w⊤x+b) adversarial training minimizes Ex,y∼pdataζ
(y(ϵ∣∣w∣∣1−w⊤x−b)), where ζ(z)=log (1+exp (z))

● adversarial training subtracts ϵ∣∣w∣∣1 from activations, while L1 adds penalties to the
loss

○ adversarial penalties to vanish if predictions become confident, L1 remains
aggressive.

Adv Training vs Weight Decay Results

Weight decay tends to overestimate adversarial damage, especially in deep networks,
requiring a smaller coefficient. In Maxout networks on MNIST, FGSM with ϵ=0.25 showed
positive results, but even a weight decay of 0.0025 caused a stagnant 5% training error.

L1 regularization can approximate adversarial effects in binary logistic regression, allowing
training but offering no regularization benefit and sometimes failing. In multiclass softmax
regression, weight decay is even harsher since adversarial perturbations must
simultaneously affect multiple weight vectors, leading to conflicts in high-dimensional space.

Adversarial training always minimizes the worst-case loss over perturbed inputs.

