Adversarial
Robustness

Eric Xie, Yagnik Panguluri, Anders Gyllenhoff, Caroline Gihlstorf

Agenda

e What are Adversarial Examples?
o Why do they occur?
e Adversarial Attacks

o Case analysis
o Implementations extending into the real world

e Defenses against Adversarial Examples
e Alternative Perspectives on Adversarial Robustness

What Are Adversarial Examples?

Examples (e.g., images) perturbed such that they differ minimally from the original example
(humans can'’t perceive the difference) but differ enough to make a classifier assign them the
wrong label.

T sign(VJ (0, z,y)) i

esign(VyJ (0, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

(Goodfellow et al., (2015), Figure 1, page 3)

Intriguing Properties of
Neural Networks

Interpreting Properties of Neural
Networks

e Often difficult to interpret their properties and mechanisms of decision-making
e Traditionally, computer vision approaches have sought to interpret individual hidden
units by finding images that maximize the activation of a specific unit, assuming each

unit captures a distinct semantic feature.
o Intriguing Properties of Neural Network, challenges this on the heels of AlexNet (2012)

Unit Analysis

The visual inspection of images x' can be described:

x’ = arg max(¢(z), e;)
zel

e |: hold out set of images
e e natural basis vector of the it" hidden unit

Compared performance between natural basis vector and a random basis vector v € R™

z' = argmax(¢(z), v)
zel

Unit Analysis

Tested on MNIST & AlexNet

e natural basis is no better than a
random basis for inspecting
properties of activation layers

e overall space of activations contains
the semantic information

e Little practical utility except confirm
assumptions on higher level
complexity of representations

| AW N ” i 1 - il N
¢§= & e ks &
J ' 1 . j &%

(a) Unit sensitive to white flowers. (b) Unit sensitive to postures.
(c) Unit senstive to round, spiky ﬂowers (d) Unit senstive to round green or yellow

objects.

Figure 3: Experiment performed on ImageNet. Images stimulating single unit most (maximum stimulation in
natural basis direction). Images within each row share many semantic properties.

allss FRSRTE
bl ARSR

(a) Direction sensitive to white, spread (b) Direction sensitive to white dogs.
flowers.
WS % 0 d
SR OET AT NeER R
: LD & | ..
(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown

heads.

Figure 4: Experiment performed on ImageNet. Images giving rise to maximum activations in a random direc-
tion (maximum stimulation in a random basis). Images within each row share many semantic properties.

Adversarial Attacks

Existence of Adversarial Examples

Output layer of a neural network = highly nonlinear function of the input

e Local generalization: The model assigns high probabilities to small perturbations of
training data points ... slightly change an image should still predict the same class.
Non-local generalization: The model can recognize objects in different contexts even if
those regions of input space are far from the training examples.

Does smoothness assumption regarding local generalization hold? Can tiny perturbations

fool deep neural networks?

Adversarial Example Generation

Let f:R™—1,...k be a classifier that maps an input image x € R™ (represented as a pixel
vector) to a discrete set of labels, where f is assumed to have a continuous loss function.

Goal: For a given image x and a target label LE{1,...,k}, find a perturbation reR™ s.t. x+ris
classified as | (targeted misclassification) while remaining in the valid pixel range.

Minimize ||7|| subject to:

1. flz+7r)=1
2. z+re€f0,1™

Minimize c|r| + loss¢(x + r,1) subject to z + r € [0, 1]™

Challenging optimization (nonconvex), but can be approximated using a penalty function and
a box-constrained L-BFGS optimizer

(2)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) Even columns: adver- (b) Even columns: adver- (¢) Randomly distorted

sarial examples for a lin- sarial examples for a 200- samples by Gaussian noise
ear (FC) classifier (std- 200-10 sigmoid network with stddev=1. Accuracy:
dev=0.06) (stddev=0.063) 51%.

Figure 7: Adversarial examples for a randomly chosen subset of MNIST compared with randomly distorted
examples. Odd columns correspond to original images, and even columns correspond to distorted counterparts.
The adversarial examples generated for the specific model have accuracy 0% for the respective model. Note
that while the randomly distorted examples are hardly readable, still they are classified correctly in half of the
cases, while the adversarial examples are never classified correctly.

Cross-Model Generalization

FCI(10~ %) | FCl(10~2) | FCl0(1) | FC100-100-10 | FC200-200-10 | AE400-10 (|| Av. distortion
FC10(10~4) 100% 11.7% 227% 2% 319% 27% 0.062
FC10(10 %) 87.1% 100% 352% 359% 27.3% 9.8% 0.1
FC10(1) 71.9% 76.2% 100% 48.1% 47% 34.4% 0.14
FC100-100-10 28.9% 13.7% 211% 1004 6.6% 2% 0.058
FC200-200-10 38.2% 14% 23 8% 203% 100% 27% 0.065
AE400-10 23.4% 16% 24 8% 9.4% 6.6% 100% 0.086
Gaussian noise, stddev=0.1 5.0% 10.1% 18.3% 0% 0% 0.8% 0.1
Gaussian noise, stddev=0.3 15.6% 11.3% 27% 5% 43% 31% 0.3

Table 2: Cross-model generalization of adversarial examples. The columns of the Tables show the error induced
by distorted examples fed to the given model. The last column shows average distortion wrt. original training
sel.

Last column: Average minimum distortion necessary to reach 0% accuracy on training set

Columns: show the error (proportion of samples misclassified) on the distorted training sets
for different models

Cross-Training-Set Generalization

I Model ” Error on Py | Error on Po l Error on Test Min Av. Distortion l
FC100-100-10: 100-100-10 trained on Py 0% 24% 2% 0.062
FC123-456-10: 123-456-10 trained on Py 0% 2.5% 2.1% 0.059
FC100-100-10" trained on Pp 23% 0% 2.1% 0.058

Table 3: Models trained to study cross-training-set generalization of the generated adversarial examples. Errors

presented in Table correpond to original not-distorted data, to provide a baseline.

FC100-100-10 FC123-456-10 FC100-100-10°
Distorted for FC100-100-10 (av. stddev=0.062) 100% 26.2% 5.9%
Distorted for FC123-456-10 (av. stddev=0.059) 100% 5.1%
Distorted for FC100-100-10 (av. stddev=0.058) 8.2% 8.2% 100%
Gaussian noise with stddev=0.06 22% 2.6% 24%
Distorted for FC100-100-10 amplified to stddev=0.1 100% 98% 43%
Distorted for FC123-456-10 amplificd to stddev=0.1 100% 22%
Distorted for FC100-100-10" amplified to stddev=0.1 27% 50% 100%
Gaussian noise with stddev=0.1 2.6% 28% 27%

Table 4: Cross-training-set generalization error rate for the set of adversarial examples generated for different
models. The error induced by a random distortion to the same examples is displayed in the last row.

Spectral Analysis of Instability

Lipschitz constraint used at each layer, which measures how much the layer's output can
change relative to its input, to examine the stability of a network

e Results show that instabilities can arise as early as the first convolutional layer, with
some layers having significantly higher bounds than others.
e Can penalizing the Lipschitz bounds during training could improve network stability?

How do we defend against adversarial examples and increase model stability?

Discussion

e Given that models will always have some finite amount of computational power, is it
ever possible to have an accurate model that is completely immune to adversarial
examples?

e Does the existence of adversarial examples expose a fundamental flaw in deep
learning?

Case Analysis: Designing
Adversaries against
Defensive Distillation

Defensive Distillation - A False Sense of
Security

Original Adversarial Original Adversarial

O
o
o
&
&y
&
il
%

What is Defensive Distillation?

P~

e A method to increase robustness by
training a model on softened labels

e C(Claimed to reduce attack success rate
from 95% to 0.5%

DNSANERNE

E Pl
B Pl
BRPECEE

nn &
BE 3
B8 &
el
GO
b &
HE @
oD &

ENNISE

>
P
4
o
%

Fig. 1. An illustration of our attacks on a defensively distilled network.
The leftmost column contains the starting image. The next three columns
show adversarial examples generated by our L2, Lo, and Lo algorithms,
respectively. All images start out classified correctly with label [, and the three
misclassified instances share the same misclassified label of I+ 1 (mod 10).
Images were chosen as the first of their class from the test set.

Distance Metrics

There are three widely-used distance metrics in the literature for generating adversarial examples, all of
which are Lp norms.

e L, distance measures the number of coordinates i
such that x. # x’. Thus, the L distance corresponds
to the number of pixels that have been altered in

; an image
2 » L, distance measures the standard Euclidean
"v”P = Zlvilp : (RMS) distance between x and x’. The L, distance
bl can remain small when there are many small

changes to many pixels.
e L distance measures the maximum change to
any of the coordinates.

Adversarial Attacks

e L,Attack - Finds the minimum number of pixels that must be changed to induce
misclassification, making changes as sparse as possible

e L, Attack - Creates small but distributed perturbations that are imperceptible to
humans but shift the model’s prediction

e L. _Attack - Ensures that no individual pixel is changed by more than a certain

inf

threshold, often leading to subtle but widespread changes

Different attack methods exploit different weaknesses in neural networks, but no single
defense can protect against all distance-based attacks.

Experimental Setup

. Layer Type MNIST Model CIFAR Model
o MOdel.S tralned on MN|ST and Convolution + ReLU 3x3x32 3x3x64
C luti ReLU 3x3x%x32 3x3x64
CIFAR-10 Max Pooling 2 22
C luti ReLU 3x3x64 3x3x128
° MNIST achieved 99.5% accuracy Cospoliicn 3 RALD 336 3x3x128
Max Pooling 2x2 2x2
1 (o) Fully C ted + ReLU 200 256
and CIFAR achieved 80% accuracy Fil Gt SR 30 2
e Pre-trained Inception v3 network i cd 2
. TABLE 1
with 960/0 tOp-5 accuracy MODEL ARCHITECTURES FOR THE MNIST AND CIFAR MODELS. THIS

ARCHITECTURE IS IDENTICAL TO THAT OF THE ORIGINAL DEFENSIVE
DISTILLATION WORK. [39]

Parameter MNIST Model CIFAR Model
Learning Rate 0.1 0.01 (decay 0.5)
Momentum 0.9 0.9 (decay 0.5)
Delay Rate - 10 epochs
Dropout 0.5 0.5
Batch Size 128 128
Epochs 50 50

TABLE II

MODEL PARAMETERS FOR THE MNIST AND CIFAR MODELS. THESE
PARAMETERS ARE IDENTICAL TO THAT OF THE ORIGINAL DEFENSIVE
DISTILLATION WORK. [39]

Experimental Results

Untargeted Average Case Least Likely

mean prob || mean prob || mean prob

Best Case Average Case Worst Case
MNIST CIFAR MNIST CIFAR MNIST CIFAR Our Lo 48 100% 410 100% || s200 100%
mean prob mean prob || mean prob mean prob || mean prob mean prob JSMA-Z - 0% - 0% - 0%
Our Lo 85 100% 59 100% || 16 100% 13 100% || 33 100% 24 100% JSMA-F - 0% = 0% - 0%
ISMA-Z 20 100% 20 100% || 56 100% 58 100% || 180 98% 150 100%
ISMA-F 17 100% 25 100% || 45 100% 110 100% || 100 100% 240 100% Our L; 032 100% 096 100% 222 100%
Our La 136 100% 017 100% ” 176 100% 033 100% " 260 100% 051 100% Decpfool 091 100% - £ N -
Decpfool 21U 100%: 0.85° -100% || = i | i - Our L., 0004 100% || 0006 100% || 001 100%
Our Leo 013 100% 0.0092 100% 016 100% 0.013 100% 023 100% 0.019 100% EGS 0.004 100 0.064 %
Fast Gradient Sign 022 100% 0015 99% 026 42% 0029 51% = 0% 034 1% 1GS 0004 1 OOZZ 0.01 933 003 923
Iterative Gradient Sign 0.14 100% 0.0078 100% 0.19 100% 0.014 100% 026 100% 0.023 100% 3 2 b 5 0
TABLE IV TABLE V
COMPARISON OF THE THREE VARIANTS OF TARGETED ATTACK TO PREVIOUS WORK FOR OUR MNIST AND CIFAR MODELS. WHEN SUCCESS RATE IS COMPAR]SON OF THE THREE VARIANTS OF TARGETED ATTACK TO

NOT 100%, THE MEAN IS ONLY OVER SUCCESSES.
PREVIOUS WORK FOR THE INCEPTION V3 MODEL ON IMAGENET. WHEN

SUCCESS RATE IS NOT 100%, THE MEAN IS ONLY OVER SUCCESSES.

Attack Evaluation and Comparison

e Comparison Against Prior Attacks
o Re-implementation of DeepFool, FGSM, Iterative Gradient Sign, and JSMA
o New attacks outperform previous methods in all three distance metrics
o JSMA fails on ImageNet due to computational cost
e Success Rates Across Datasets
o MNIST and CIFAR - 100% success for all attack methods
o ImageNet - The Linf attack can change an image’s classification by flipping the lowest bit of
each pixel
o LO and L2 attacks require 2x to 10x fewer modifications than previous attacks

Visualization of Attacks

Target Classification (L3) Target Classification (Lg) Target Classification (L)
0o 1 2 3 4 5 6 17 0 1 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9

9

ojojojojofolofojolol dolojelolojojolololo dololololololooolo]

nunnnnnnnonnn ~-Anannnnonnn -Annnnnnnnn
(Z]

0

1

“AEER

7

¥ ¥l ¥l ¥l ¥l ¥l ¥l Wl A W ~HEAAAAdANAN %
EEEEEEEEER - CEEEEEEEE -pEEBDDERED
Al ladagagalagagal oo dalagalalagagalal
Fig. 5. Our L adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset

Fig. 3. Our L2 adversary applied to the MNIST datasct performing a targeted Fig. 4. Our Ly adversary applied to the MNIST datasct performing a targeted with that label.
attack for every source/target pair. Each digit is the first image in the dataset attack for every source/target pair. Each digit is the first image in the dataset
with that label. with that label.

.~AAEEEEBERE ."BEEEEEEBEEE g EEERER
- EEEEEEEEE S A - EEEEEEEE -E88EREEREs
COonnmannEnne OnonnnEaEnanmne cOnnnnnnnong
- - v HEEEEEEEEEE
c-EEEEEEEEEE 2 -EEEEEEEEGEHE B EEEERE RS
-EEEEEEEEEE 2 -EEEEEEEEER 11

=

8

Role of Transferability

e Even if a model is trained against adversarial attacks, adversarial examples often
remain effective on similar models

e High-confidence adversarial examples (crafted to be misclassified with high certainty)
bypass distillation defenses

e Any proposed defense must prove it can break transferability

Why Do These Attacks Work?

e The Local Linearity Hypothesis

o Neural networks are highly non-linear but behave linearly in small regions
e Adversarial perturbations scale with dimensionality

o Small, imperceptible changes in high-dimensional spaces remain effective

Adversarial robustness cannot rely solely on distillation

Real-World Adversarial
Examples

Image-to-Model Pipelines Can Differ

Adversarial Classification
E— [model J) Output Label

VS

Adversarial :> Camera; other Classification
Image model sensors | model ——) Output Label

~

o

Generate
adversarial
images

Research Pipeline:

Apply
real-world
transformations

Measure
adversarial
image
retention after
transformation

Generate
adversarial
images

Research Pipeline:

Apply
real-world
transformations

Measure
adversarial
image
retention after
transformation

Generate Adversarial Images

Fast Method: maximize cost of true label

Xadv — X 4 esign(V xJ(X,; ytrue)) (Kurakin et al., (2017), page 4)

Basic Iterative Method: maximize cost of true label over multiple iterations

Xohv— ¢, XN — Clz’px,e{X adv + osign(VxJ(X&%®, ytme))} (Kurakin et al., (2017), page 4)

Iterative Least-Likely Class Method: minimize cost of least likely label over multiple iterations

X — X, X?\Id—}z—)l = Clipx,e { X% — asign (VxJ(X&8% yrr))} (Kurakin etal, (2017), page 5)

Generate Adversarial Images

10 1.0

—— clean images —— clean images i
08 —e— fast adv. | 08 —e— fast adv.
—=— basic iter. adv. —=— basic iter. adv.
> 4 > 4
8 o6 —=— |east likely class adv. 8 o6 —=— |east likely class adv.
= 3 . . .
g g Least likely class iterative
7 oa 2 o4 method performs best
o o

| | wrt reducing model

\‘ accuracy
0.0 == = = =

[16 32 a8 64 80 2 12 128 o 16 32 48 64 80 9% 112 128
epsilon epsilon

02 0.2

Figure 2: Top-1 and top-5 accuracy of Inception v3 under attack by different adversarial methods
and different e compared to “clean images” — unmodified images from the dataset. The accuracy
was computed on all 50, 000 validation images from the ImageNet dataset. In these experiments €
varies from 2 to 128.

(Kurakin et al., (2017), Figure 2, page 5)

Generate
adversarial
images

Research Pipeline:

Apply
real-world
transformations

Measure
adversarial
image
retention after
transformation

Apply Real-World Transformations

Experiment 1 - Photography Transformations:

(a) Printout (b) Photo of printout (c) Cropped image

Figure 3: Experimental setup: (a) generated printout which contains pairs of clean and adversar-
ial images, as well as QR codes to help automatic cropping; (b) photo of the printout made by a
cellphone camera; (c) automatically cropped image from the photo.

(Kurakin et al., (2017), Figure 3, page 6)

Print photos of adversarial
and non-adversarial images

Take photos of these
printouts

Input photos into the
classification model

Apply Real-World Transformations

Experiment 1 - Photography Transformations:

e 2 Experimental Scenarios:
o Test on random set of examples

o Teston a select set of examples: model correctly classifies non-adversarial images
but misclassifies adversarial images

Apply Real-World Transformations

Experiment 2 - Additional Transformations:

e Test on additional transformations: brightness, contrast, blur, noise, and JPEG encoding

Generate
adversarial
images

Research Pipeline:

Apply
real-world
transformations

Measure
adversarial
image
retention after
transformation

Measure Adversarial Image Retention
After Transformation

o ZZ:I C(Xk" yfrue)C(Xadv’ ytrue) (T(Xadv) yfrue)
ZZ:l Xk’ ytrue)C(Xadv ytrue)

(1)

(Kurakin et al., (2017), Equation 1, page 6)

Destruction rate (d): measures how many adversarial images lose their adversarial nature after a
transformation (i.e., the classifier gets them right after the transformation)

Results - Photographed Images

e Fast Generation method lost the fewest adversarial examples
e Destruction rate was sometimes lower for randomly sampled images

e Randomly selected images from the basic iterative and iterative least-likely class methods
did better at remaining adversarial than adversarially cherry-picked images

Results - Other
Transformations

Fast Generation method lost the fewest
adversarial examples

Most effective transformations: Gaussian
blur, Gaussian noise, and JPEG encoding

Takeaway: adversarial examples are not
absent from real-world settings

destruction rate
e
#
destruction rate

10
contrast « X

(b) Change of contrast

destruction rate
destruction rate

04 06 08 L 12 14 16 18 20 s

10 15 20
Gaussian blur o Gaussian noise o

(c) Gaussian blur (d) Gaussian noise

fast adv., top-1
fast adv., top-5
—— basic iter. adv., top-1
---- basic iter. adv., top-5
— least likely class adv., top-1
---- least likely class adv., top-5

destruction rate

Jpea quaiity
(e) JPEG encoding

Figure 6: Comparison of adversarial destruction rates for various adversarial methods and types of
transformations. All experiments were done with € = 16.

(Kurakin et al., (2017), Figure 6, page 14)

Transferability to Another Model

http://www.youtube.com/watch?v=zQ_uMenoBCk

Discussion

° Besides taking photos of printed images and using the other adjustments (e.g., brightness/contrast/noise, etc)
mentioned in the presentation, what other “real-world transformations” can you think of applying to
adversarial examples (either in computer vision or in another domain entirely)?

e Although some adversarial examples are classified correctly after going through real-world transformations,
others still cause the classifier to misclassify them. Do you think this could be attributed simply to
randomness or could there be a shared property of these image that make them particularly robust to
real-world transformations?

e Given that adversarial examples can successfully fool neural networks across multiple architectures, what
are some limitations of current deep learning models that make them so vulnerable, and do you think true
adversarial robustness is possible, or is this an inherent flaw of neural networks?

Defending Against
Adversarial Examples

A Linear Explanation of Adversarial
Examples

e Input features have limited precision (e.g., 8 bits/pixel)

e Perturbations smaller than this precision threshold | [n| |=<e should be ignored, but, in
high dimensions, small, coordinated perturbations aligned with the model’s weight
vectors and amplify linearly across features.

o dot product wTn grows proportionally to the dimensionality

Neural networks are non linear, but their architectural choices (ReLUs, LSTMs, maxout units)
prioritize linear like behavior to ease optimization — Can craft adversarial perturbations via
linear approximations

Fast Gradient Sign Method

Adversarial examples are generated via:

n=e-sign(V J(6,x.y))

where
e O parameters of the model
e X input
e y:targets associated with x
e ¢ Perturbation magnitude
[

VXJ: Gradient of the loss with
respect to the input.

H E

(b)

(a)

NN NI
SUNNN WD G
CNNAN VPN
GO IAY W

INdIwsAIH b
QWU NN

NWvUI oW G
WA NI N W
WrN NN GHw W
WLy AW b~

©)

S S

ot

7
3
3
%
7
3%
2
3
~a

b & N

(C T RN R Y

Figure 2: The fast gradient sign method applied to logistic regression (where it is not an approxi-
mation, but truly the most damaging adversarial example in the max norm box). a) The weights of
a logistic regression model trained on MNIST. b) The sign of the weights of a logistic regression
model trained on MNIST. This is the optimal perturbation. Even though the model has low capacity
and is fit well, this perturbation is not readily recognizable to a human observer as having anything
to do with the relationship between 3s and 7s. ¢) MNIST 3s and 7s. The logistic regression model
has a 1.6% error rate on the 3 versus 7 discrimination task on these examples. d) Fast gradient sign
adversarial examples for the logistic regression model with ¢ = .25. The logistic regression model
has an error rate of 99% on these examples.

Model Type Perturbation Error on Adversarial | Avg. Confidence on
Magnitude (¢) | Examples (%) Misclassified
Examples (%)
Shallow Softmax (MNIST) | 0.25 99.9% 79.3
Maxout Network (MNIST) | 0.25 97.6% 97.6
Conv Maxout (CIFAR-10) (0.1 87.15% 96.6

Effectiveness of Fast Gradient Sign Method on Different Models

Why does this work?

Deep networks can theoretically resist adversarial examples via the universal approximator
theorem, but standard training fails to enforce it.

Can instead use FGSM as an effective regularizer, continually updating the supply of
adversarial examples:

~J(0,x,y)=aJ(0,x,y)+(1-a))(B|x+nly) n=e-sign(V J(0.xy))

What about the model learning how adversaries will react to changes in weights?

Effectiveness

Figure 3: Weight visualizations of maxout networks trained on MNIST. Each row shows the filters
for a single maxout unit. Left) Naively trained model. Right) Model with adversarial training.

Model Type Test Error | Error on Adversarial | Confidence on

Test Error (%) (%) Examples (%) Misclassified Examples (%)
Standard Model | 0.94 89.4 97.6

Adversarially 0.84 17.9 814

Trained Model

Regularization Method Error on Fast Gradient Sign | Confidence on Misclassified
Adversarial Examples (%) Examples (%)

Adding Random +& Noise | 86.2 973

to Pixels

Adding U(-g, €) Noise to 90.4 978

Pixels Trained Model

Robustness Impact with Adversarial Training

Robustness of Alternative Adversarial Training Methods vs FGSM Samples

A Different Understanding
of Adversarial Examples
(Features, not bugs)

Off-Manifold s
Direction (Ours) Loss Gradient (PGD)

Discussion

Training image

frog

Do models and humans rely on the same types of features to classify
images?

An Alternate Perspective of Robustness

e C(Classifiers are trained to identify features within the data that will generalize across
members in each class.

Robust features: Recognizable to humans
Non-robust features: Highly informative for a model, but imperceptible to humans

e (Can features within the data that are useful for models but not humans be extracted
and analyzed independently?

Robust vs Non-Robust Separation

If we can disentangle robust and non-robust features within the dataset, we should expect:

e Training on robust features gives some level of adversarial robustness
e Training on non-robust features still retains predictive utility

Robust dataset

good standard accuracy
good robust accuracy

=

Unmodified
test set

good standard accuracy
bad robust accuracy

Training image

frog

Non-robust dataset

Robust Dataset

Remove all predictive non-robust features
from each input

e Take an adversarially trained
model’s outputs for a given input

e Adjust a randomly selected
non-correlated image until the adv.
trained model’'s output matches

“airplane”

Non-Robust
Dataset

Remove all predictive robust features
from each input

e Switch the label of each input
Add adversarial perturbations until
a standard model predicts the new
label

Training image Adversarial example Relabel as cat

- i o
=>

Robust Features: dog Robust Features: dog
Non-Robust Features: dog Non-Robust Features: cat

good accuracy

Evaluate on
original test set

Robust vs
Non-Robust

M Std accuracy WM Adv accuracy (£=10.25)

e Training on the robust dataset gives
some level of adversarial 4
robustness

e Training on the non-robust dataset i
actually gives higher accuracy on
the test set

Std Training Adv Training Std Training Std Training
using D using D using Da using Dug

Test Accuracy on D (%)

Why Does This Matter?

Suppose there is a distinction between robust and non-robust features within the data, what
does this tell us?
e What happens to the model when it learns robust vs non-robust features?

Through this lens, we can better analyze model robustness and behavior with respect to
adversarial examples

Are Adversarial Examples always Features?

e Dataset containing only robust features (black and white) with added:
o Random noise
o Label noise

e With a robust linear classifier, a significant portion of each sample can be altered
without affecting classification (¢ = 0.9)
e With a deep neural network, ¢ = 0.01 is enough to flip almost all labels

%y
% °oq 80
o3¥T
° °
9o :V,
=8
M

Adversarial Example Transferability

Non-robust features are inherent to the underlying data distribution

e Regardless of the model size/architecture, it is possible for models to simply learn the
same useful (non-robust) features as each other

04

= i

0 . ()
(

L]] Lr
s
4 '..l.* 44 T gQ q
L) {.& w: We ensemble all features
{2 ? £ ! 1 below a certain threshold of
55 T = £ robustness.

Discussion

e Should we continue to use non-robust features for our predictions?
o Predictive power vs robustness and interpretability
e How does the separation between robust and non-robust features affect biases within
the model?
o If a model classifies only using robust features, does this remove subtleties
essential for utility with respect to underrepresented groups?
o If a model classifies using non-robust features, will there be
human-unintelligible biases within the predictions as well?

Thank You!

References

Carlini, Nicholas, and David Wagner. “Towards Evaluating the Robustness of Neural Networks,” 2017.
https://arxiv.org/abs/1608.04644.

Goodfellow, lan J,, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing Adversarial Examples,” 2015.
https://arxiv.org/abs/1412.6572.

Ilyas, Andrew, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. “Adversarial Examples Are
Not Bugs, They Are Features,” 2019. https://arxiv.org/abs/1905.02175.

Kurakin, Alexey, lan Goodfellow, and Samy Bengio. “Adversarial Examples in the Physical World,” 2017.
https://arxiv.org/abs/1607.02533.

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, lan Goodfellow, and Rob Fergus. “Intriguing
Properties of Neural Networks,” 2014. https://arxiv.org/abs/1312.6199.

Appendix

Adv Training vs Weight Decay

Adv Training more effective than weight decay

e For logistic regression P(y=1)=0(wTx+b) adversarial training minimizes Ex,y~pdatal
(y(el Iw]| |1-wTx=b)), where {(z)=log(1+exp(z))
e adversarial training subtracts €| |w| |, from activations, while L' adds penalties to the
loss
o adversarial penalties to vanish if predictions become confident, L! remains
aggressive.

Adv Training vs Weight Decay Results

Weight decay tends to overestimate adversarial damage, especially in deep networks,
requiring a smaller coefficient. In Maxout networks on MNIST, FGSM with €=0.25 showed
positive results, but even a weight decay of 0.0025 caused a stagnant 5% training error.

L1 regularization can approximate adversarial effects in binary logistic regression, allowing
training but offering no regularization benefit and sometimes failing. In multiclass softmax
regression, weight decay is even harsher since adversarial perturbations must
simultaneously affect multiple weight vectors, leading to conflicts in high-dimensional space.

Adversarial training always minimizes the worst-case loss over perturbed inputs.

