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What Are Adversarial Examples?

Examples (e.g., images) perturbed such that they differ minimally from the original example 
(humans can’t perceive the difference) but differ enough to make a classifier assign them the 
wrong label.

(Goodfellow et al., (2015), Figure 1, page 3)



Intriguing Properties of 
Neural Networks



Interpreting Properties of Neural 
Networks

● Often difficult to interpret their properties and mechanisms of decision-making
● Traditionally, computer vision approaches have sought to interpret individual hidden 

units by finding images that maximize the activation of a specific unit, assuming each 
unit captures a distinct semantic feature. 
○ Intriguing Properties of Neural Network, challenges this on the heels of AlexNet (2012)



Unit Analysis

The visual inspection of images x' can be described:

● I: hold out set of images
● ei: natural basis vector of the ith hidden unit

Compared performance between natural basis vector and a random basis vector v ∈ Rm



Unit Analysis

Tested on MNIST & AlexNet

● natural basis is no better than a 
random basis for inspecting 
properties of activation layers

● overall space of activations contains 
the semantic information

● Little practical utility except confirm 
assumptions on higher level 
complexity of representations



Adversarial Attacks



Existence of Adversarial Examples

Output layer of a neural network = highly nonlinear function of the input

● Local generalization: The model assigns high probabilities to small perturbations of 
training data points … slightly change an image should still predict the same class.

● Non-local generalization: The model can recognize objects in different contexts even if 
those regions of input space are far from the training examples.

Does smoothness assumption regarding local generalization hold? Can tiny perturbations 
fool deep neural networks? 



Adversarial Example Generation

Let  f:Rm→1,…,k be a classifier that maps an input image x ∈ Rm (represented as a pixel 
vector) to a discrete set of labels, where f is assumed to have a continuous loss function.

Goal: For a given image x and a target label l∈{1,…,k}, find a perturbation r∈Rm s.t. x+r is 
classified as l (targeted misclassification) while remaining in the valid pixel range.

Challenging optimization (nonconvex), but can be approximated using a penalty function and 
a box-constrained L-BFGS optimizer





Last column: Average minimum distortion necessary to reach 0% accuracy on training set

Columns: show the error (proportion of samples misclassified) on the distorted training sets 
for different models

Cross-Model Generalization



Cross-Training-Set Generalization



Spectral Analysis of Instability

Lipschitz constraint used at each layer, which measures how much the layer's output can 
change relative to its input, to examine the stability of a network

● Results show that instabilities can arise as early as the first convolutional layer, with 
some layers having significantly higher bounds than others.

● Can penalizing the Lipschitz bounds during training could improve network stability?

How do we defend against adversarial examples and increase model stability? 



Discussion

● Given that models will always have some finite amount of computational power, is it 
ever possible to have an accurate model that is completely immune to adversarial 
examples?

● Does the existence of adversarial examples expose a fundamental flaw in deep 
learning?



Case Analysis: Designing 
Adversaries against 
Defensive Distillation



Defensive Distillation - A False Sense of 
Security

What is Defensive Distillation?

● A method to increase robustness by 
training a model on softened labels

● Claimed to reduce attack success rate 
from 95% to 0.5%



Distance Metrics

● L0 distance measures the number of coordinates i 
such that xi ≠ x’i. Thus, the L0 distance corresponds 
to the number of pixels that have been altered in 
an image

● L2 distance measures the standard Euclidean 
(RMS) distance between x and x’. The L2 distance 
can remain small when there are many small 
changes to many pixels.

● Linf distance measures the maximum change to 
any of the coordinates.

There are three widely-used distance metrics in the literature for generating adversarial examples, all of 
which are Lp norms.



Adversarial Attacks

● L0 Attack  - Finds the minimum number of pixels that must be changed to induce 
misclassification, making changes as sparse as possible

● L2 Attack - Creates small but distributed perturbations that are imperceptible to 
humans but shift the model’s prediction

● Linf Attack - Ensures that no individual pixel is changed by more than a certain 
threshold, often leading to subtle but widespread changes

Different attack methods exploit different weaknesses in neural networks, but no single 
defense can protect against all distance-based attacks.



Experimental Setup
● Models trained on MNIST and 

CIFAR-10
● MNIST achieved 99.5% accuracy 

and CIFAR achieved 80% accuracy
● Pre-trained Inception v3 network 

with 96% top-5 accuracy



Experimental Results



Attack Evaluation and Comparison

● Comparison Against Prior Attacks
○ Re-implementation of DeepFool, FGSM, Iterative Gradient Sign, and JSMA
○ New attacks outperform previous methods in all three distance metrics
○ JSMA fails on ImageNet due to computational cost

● Success Rates Across Datasets
○ MNIST and CIFAR - 100% success for all attack methods
○ ImageNet - The Linf attack can change an image’s classification by flipping the lowest bit of 

each pixel
○ L0 and L2 attacks require 2x to 10x fewer modifications than previous attacks



Visualization of Attacks



Role of Transferability

● Even if a model is trained against adversarial attacks, adversarial examples often 
remain effective on similar models

● High-confidence adversarial examples (crafted to be misclassified with high certainty) 
bypass distillation defenses

● Any proposed defense must prove it can break transferability 



Why Do These Attacks Work?

● The Local Linearity Hypothesis
○ Neural networks are highly non-linear but behave linearly in small regions

● Adversarial perturbations scale with dimensionality
○ Small, imperceptible changes in high-dimensional spaces remain effective

Adversarial robustness cannot rely solely on distillation



Real-World Adversarial 
Examples
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Image-to-Model Pipelines Can Differ
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Generate Adversarial Images

Fast Method: maximize cost of true label

(Kurakin et al., (2017), page 4)

Basic Iterative Method: maximize cost of true label over multiple iterations

(Kurakin et al., (2017), page 4)

Iterative Least-Likely Class Method: minimize cost of least likely label over multiple iterations

(Kurakin et al., (2017), page 5)



Generate Adversarial Images

Least likely class iterative 
method performs best 
wrt reducing model 
accuracy

(Kurakin et al., (2017), Figure 2, page 5)
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Apply Real-World Transformations

● Print photos of adversarial 
and non-adversarial images

● Take photos of these 
printouts 

● Input photos into the 
classification model

(Kurakin et al., (2017), Figure 3, page 6)

Experiment 1 - Photography Transformations:



Apply Real-World Transformations

● 2 Experimental Scenarios:

○ Test on random set of examples

○ Test on a select set of examples: model correctly classifies non-adversarial images 
but misclassifies adversarial images

Experiment 1 - Photography Transformations:



Apply Real-World Transformations

Experiment 2 - Additional Transformations:

● Test on additional transformations: brightness, contrast, blur, noise, and JPEG encoding
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Measure Adversarial Image Retention 
After Transformation

Destruction rate (d): measures how many adversarial images lose their adversarial nature after a 
transformation (i.e., the classifier gets them right after the transformation)

(Kurakin et al., (2017), Equation 1, page 6)



Results - Photographed Images

● Fast Generation method lost the fewest adversarial examples

● Destruction rate was sometimes lower for randomly sampled images

● Randomly selected images from the basic iterative and iterative least-likely class methods 
did better at remaining adversarial than adversarially cherry-picked images



Results - Other 
Transformations

● Fast Generation method lost the fewest 
adversarial examples

● Most effective transformations: Gaussian 
blur, Gaussian noise, and JPEG encoding

● Takeaway: adversarial examples are not 
absent from real-world settings

(Kurakin et al., (2017), Figure 6, page 14)



Transferability to Another Model

http://www.youtube.com/watch?v=zQ_uMenoBCk


Discussion
● Besides taking photos of printed images and using the other adjustments (e.g., brightness/contrast/noise, etc) 

mentioned in the presentation, what other “real-world transformations” can you think of applying to 
adversarial examples (either in computer vision or in another domain entirely)?

● Although some adversarial examples are classified correctly after going through real-world transformations, 
others still cause the classifier to misclassify them. Do you think this could be attributed simply to 
randomness or could there be a shared property of these image that make them particularly robust to 
real-world transformations?

● Given that adversarial examples can successfully fool neural networks across multiple architectures, what 
are some limitations of current deep learning models that make them so vulnerable, and do you think true 
adversarial robustness is possible, or is this an inherent flaw of neural networks?



Defending Against 
Adversarial Examples



A Linear Explanation of Adversarial 
Examples

Neural networks are non linear, but their architectural choices (ReLUs, LSTMs, maxout units) 
prioritize linear like behavior to ease optimization → Can craft adversarial perturbations via 
linear approximations

● Input features have limited precision (e.g., 8 bits/pixel)
● Perturbations smaller than this precision threshold ∣∣η∣∣∞<ϵ should be ignored, but, in 

high dimensions, small, coordinated perturbations aligned with the model’s weight 
vectors and amplify linearly across features. 

○ dot product w⊤η grows proportionally to the dimensionality 



Fast Gradient Sign Method

Adversarial examples are generated via:

η=ϵ⋅sign(∇xJ(θ,x,y))

where 

● θ: parameters of the model
● x: input
● y: targets associated with x
● ϵ: Perturbation magnitude
● ∇xJ: Gradient of the loss with 

respect to the input. Effectiveness of Fast Gradient Sign Method on Different Models



Why does this work? 

Deep networks can theoretically resist adversarial examples via the universal approximator 
theorem, but standard training fails to enforce it.

Can instead use FGSM as an effective regularizer, continually updating the supply of 
adversarial examples:

~J(θ,x,y)=αJ(θ,x,y)+(1−α)J(θ,x+η,y)

What about the model learning how adversaries will react to changes in weights? 



Effectiveness

Robustness Impact with Adversarial Training Robustness of Alternative Adversarial Training Methods vs FGSM Samples



A Different Understanding 
of Adversarial Examples
(Features, not bugs)



Discussion

Do models and humans rely on the same types of features to classify 
images?



An Alternate Perspective of Robustness

Robust features: Recognizable to humans
Non-robust features: Highly informative for a model, but imperceptible to humans

● Can features within the data that are useful for models but not humans be extracted 
and analyzed independently?

● Classifiers are trained to identify features within the data that will generalize across 
members in each class.



Robust vs Non-Robust Separation

If we can disentangle robust and non-robust features within the dataset, we should expect:

● Training on robust features gives some level of adversarial robustness
● Training on non-robust features still retains predictive utility



Robust Dataset

Remove all predictive non-robust features 
from each input

● Take an adversarially trained 
model’s outputs for a given input

● Adjust a randomly selected 
non-correlated image until the adv. 
trained model’s output matches



Non-Robust 
Dataset

Remove all predictive robust features 
from each input

● Switch the label of each input
● Add adversarial perturbations until 

a standard model predicts the new 
label



Robust vs 
Non-Robust 

● Training on the robust dataset gives 
some level of adversarial 
robustness

● Training on the non-robust dataset 
actually gives higher accuracy on 
the test set



Suppose there is a distinction between robust and non-robust features within the data, what 
does this tell us?

● What happens to the model when it learns robust vs non-robust features?

Through this lens, we can better analyze model robustness and behavior with respect to 
adversarial examples

Why Does This Matter?



Are Adversarial Examples always Features?

● Dataset containing only robust features (black and white) with added:
○ Random noise
○ Label noise

● With a robust linear classifier, a significant portion of each sample can be altered 
without affecting classification (𝜖 = 0.9)

● With a deep neural network, 𝜖 = 0.01 is enough to flip almost all labels



Adversarial Example Transferability

Non-robust features are inherent to the underlying data distribution

● Regardless of the model size/architecture, it is possible for models to simply learn the 
same useful (non-robust) features as each other



Discussion

● Should we continue to use non-robust features for our predictions?
○ Predictive power vs robustness and interpretability

● How does the separation between robust and non-robust features affect biases within 
the model?

○ If a model classifies only using robust features, does this remove subtleties 
essential for utility with respect to underrepresented groups?

○ If a model classifies using non-robust features, will there be 
human-unintelligible biases within the predictions as well?



Thank You!
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Appendix



Adv Training vs Weight Decay

Adv Training more effective than weight decay

● For logistic regression P(y=1)=σ(w⊤x+b) adversarial training minimizes Ex,y∼pdataζ
(y(ϵ∣∣w∣∣1−w⊤x−b)), where ζ(z)=log (1+exp (z)) 

● adversarial training subtracts ϵ∣∣w∣∣1 from activations, while L1 adds penalties to the 
loss

○ adversarial penalties to vanish if predictions become confident, L1 remains 
aggressive.



Adv Training vs Weight Decay Results

Weight decay tends to overestimate adversarial damage, especially in deep networks, 
requiring a smaller coefficient. In Maxout networks on MNIST, FGSM with ϵ=0.25 showed 
positive results, but even a weight decay of 0.0025 caused a stagnant 5% training error.

L1 regularization can approximate adversarial effects in binary logistic regression, allowing 
training but offering no regularization benefit and sometimes failing. In multiclass softmax 
regression, weight decay is even harsher since adversarial perturbations must 
simultaneously affect multiple weight vectors, leading to conflicts in high-dimensional space.

Adversarial training always minimizes the worst-case loss over perturbed inputs.


