
Auditing and
Membership Inference

Eric Xie, Yagnik Panguluri, Anders Gyllenhoff, Caroline Gihlstorf

Membership Inference Attacks
Against Machine Learning Models
Shokri et al. (2016)

Privacy in Machine Learning

Inference about members of the population:

● “The model should reveal no more about the input to which it was applied than
would have been known about this input without applying the model”

● Generalized models naturally uncover correlations for populations → unavoidable
privacy breach

Inference about members of the training dataset

● Closely aligned with the motivations of differential privacy

What are Membership Inference Attacks

Given a data record and black-box access
to a trained model, can an adversary
determine if that record was part of the
model’s training dataset?

What are Membership Inference Attacks

Given a data record and black-box access
to a trained model, can an adversary
determine if that record was part of the
model’s training dataset?

● Sensitive Data

What are Membership Inference Attacks

Given a data record and black-box access
to a trained model, can an adversary
determine if that record was part of the
model’s training dataset?

● Sensitive Data
● Machine Learning as a Service

(MLaaS)

Generating Training Data
for Shadow Models

Option 1: Model-Based Synthesis

1. Seach (using hill-climbing) the space of
possible data records to identify inputs
classified by the target model with high
confidence.

2. Sample synthetic data from these records.
Repeat until the training dataset is full.

Fix a class c

Reduce search diameter

Generating Training Data for Shadow Models

Option 2: Statistics Based Synthesis

● Knowledge of the marginal
distributions of the features

● Generate synthetic records by
sampling each feature
independently according to its
marginal distribution c

Option 3: Noisy, Real Data

● Attacker has access to similar
data, but not identical
("noisy" version),

● Simulate realistic conditions
with data augmentation.

Training the Model

Option 2: Statistics Based Synthesis

● Knowledge of the marginal
distributions of the features

● Generate synthetic records by
sampling each feature
independently according to its
marginal distribution c

Option 3: Noisy, Real Data

● Attacker has access to similar
data, but not identical
("noisy" version),

● Simulate realistic conditions
with data augmentation.

Split the attack training set
into partitions for each class.

For each label, train a
separate model that, given
the prediction vector,
predicts membership status.

Training the Model

…

Training
Set

Test
Set

“in”

“in”
“out”

“in”
“out”

Form attack training dataset by
combining the tuples
(y, y, membership) where

● y is the true class label
● y=f ishadow(x)
● “membership” is set to “in” if

it x was in the shadow
models training set

Shadow
Model 2

ctarget=1

ctarget=2

ctarget=n

…

Subsets by
true label

Shadow
Model k

“in”
“out”

Shadow
Model 1

Training the Model

Attack
Model 1

ctarget=1

ctarget=2

ctarget=n

…

Attack
Model 2

Attack
Model n

…

Binary
Classifier

Subsets by
true label

(y, y)

(y, y)

(y, y)

* train *

{in, out}

{in, out}

{in, out}

Results & Key Findings: Overall Attack
Accuracy

CIFAR datasets

● CIFAR-10: 15,000 training
records; test accuracy ~0.6

○ Attack average precision of
0.74

● CIFAR-100: 29,540 training
records; test accuracy ~0.2

○ Attack average precision of
0.988

Texas Hospital dataset

● Google-trained model: training
and test accuracies of 0.66 and
0.51, respectively.

○ Attack precision was mostly
above 0.6 and exceeded 0.85
for over 20 classes.

Location dataset

● Google-trained mode: Perfect
training accuracy and 0.66 test
accuracy

● Attack’s precision ranged between
0.6 and 0.8 with almost constant
recall of 1.

Results & Key Findings: Comparison Across
Platforms

Google models tended to leak more
information than Amazon trained
models.

● Precession was 0.505 for 2
classes and 0.935 for 100
classes.

Lower attack precession on local
model.

Results & Key Findings: Shadow Model
Training Data Quantity

The attack remains robust even with added noise:

● Baseline attack precision: 0.678
● With 10% noise: precision drops to ~0.666
● With 20% noise: precision drops to ~0.613

Marginal-based Synthesis

● Attack precision: 0.795

Model-based Synthesis

● 0.896 for most classes
● Some underrepresented classes had precision before 0.1

Results & Key Findings: Number of Classes
and Training Distribution

Mitigations

1) Top-k filtering restricts the prediction vector to the
top k classes

2) Coarsening prediction precision by rounding the
probabilities to fewer digits

3) Increasing the temperature parameter in the
softmax layer produces a flatter probability
distribution

4) Adding an L2 penalty to the loss function to
reduce overfitting, improving generalization while
also reducing leakage

The Secret Sharer:
Evaluating and Testing
Unintended Memorization in
Neural Networks
Carlini et al. (2018)

Unintended Memorization in Neural
Networks

Neural networks,
especially generative

models, can memorize rare
or unique training

sequences

Sensitive data, like
credit card numbers or
private messages, may

appear even if it’s
uncommon

● This memorization is unintentional and
often goes undetected during evaluation

● If exposed, attackers can extract actual
training data content - not just infer
presence

What Does Memorization Look Like?

● Imagine inserting “The secret code
is 1234567890” into training data

● After training, prompt the model
with: “The secret code is”

● If the model outputs exact match,
has it memorized it?

● Need a way to measure how likely
the model is to generate this exact
phrase

Measuring Memorization: The Exposure
Metric

● Insert unique, random “canary”
sequences into training data

● After training, measure how likely the
model is to generate the canary

● Exposure = how much more likely the
canary is vs. random alternatives

● High exposure -> model likely
memorized the sequence

Exposure to Extraction

● When exposure is high, memorized
canaries can be recovered

● Brute-force search over all
possibilities is too slow

● Authors develop a shortest-path
search (Dijkstra-like) for efficient
extraction

● Achieves up to 100,000x speedup
over brute-force

Case Study: Google’s Smart Compose

● Smart Compose: Gmail’s autocomplete
system trained on millions of user emails

● Inserted canaries 1 to 10,000 times during
training

● Exposure increased with frequency, but
canaries were not extractable

● Used exposure metric to tune privacy risk,
e.g., via differential privacy

Can We Prevent Memorization?

● Regularization techniques (e.g., dropout, weight decay): Ineffective
● Sanitization (e.g. blacklisting sensitive patterns): Helps, but incomplete
● Differential Privacy (DP-SGD): Only reliable defense

○ DP training eliminated memorization with only minor utility loss

Takeaways

● Neural networks can unintentionally memorize and leak rare training data
● The exposure metric quantifies this risk and enables real extraction
● Memorization occurs early in training and isn’t prevented by regularization
● Differential Privacy is the only proven defense that works

Discussion (10 minutes)

● Results show that some classes exhibit a much
lower attack precision than others. Is this
something researchers should disclose as well?
If so, what things so far in the semester that we
have discussed should be included in this
disclosure

○ Where do we draw the line?

● Do you think that companies which deploy
generative language models (like Smart
Compose) be required to audit for memorized
secrets? Why or why not?

● What do you think about using black
box APIs to train models and to be
used in production?

○ If you had a classification model in
production would you share the entire
prediction probability vector?

● How might membership inference
attacks exacerbate existing biases in
models trained on imbalanced datasets
(e.g., criminal justice or hiring systems)?

Re-Evaluating Attack
Evaluation

Carlini et al., (2022)

Prior Evaluation Technique: Averaging

Limitations: Treats all datapoints the same when they can have meaningful differences
across certain dimensions

False negatives (not very
effective) vs false positives

(very effective)

Larger chance of correctly
randomly guessing vs

smaller change of
guaranteed correctness (not

reflected in accuracy)

Approach

1. Propose an new evaluation technique
2. Construct an attack
3. Evaluate Performance
4. Ablation Study

Proposed Evaluation Technique

True positive rate (TPR) at a small false positive rate (FPR):

Small FPR
ensures any

positive labels
are truly
positive

Higher TPR
indicates larger
attack success

Not dependent
on knowing the
specific number

of certain
datapoints

Proposed Evaluation Technique

True positive rate (TPR) at a small false positive rate (FPR):

Small FPR
ensures any

positive labels
are truly
positive

Higher TPR
indicates larger
attack success

Not dependent
on knowing the
specific number

of certain
datapoints

Can be displayed using ROC curves

Constructing an Attack

Baseline Attack: LOSS

ℓ < threshold → ✓ In training data
ℓ > threshold → ✕ Not in training data

→ good at identifying non-training examples, bad at
identifying training examples

Constructing an Attack

Baseline Attack: LOSS → Scores badly on proposed metric:

Carlini et al., (2022), Figure 2, page 4)

Constructing an Attack

Proposed Attack: Likelihood Ratio Attack (LiRA):

1. Train shadow models on datapoints
2. Compute Likelihood-ratio test to determine datapoint

label

Constructing an Attack

1. Train shadow models on datapoints

For a given datapoint d:
● 𝑸in: distribution of models trained on d (50% of models)
● 𝑸out: distribution of models not trained on d (50% of models)

Constructing an Attack

2. Compute Likelihood-ratio test to determine datapoint label

(Carlini et al., (2022), Equation 2, page 4)

Constructing an Attack

Some Issues:

1. Can’t compute these distributions

Constructing an Attack

Some Issues:

1. Can’t compute these distributions → use distributions over model losses:

(Carlini et al., (2022), Equation 3, page 4)

Constructing an Attack

Some Issues:

1. Can’t compute these distributions → use distributions over model losses:

2. May need many shadow models to estimate all distribution parameters

(Carlini et al., (2022), Equation 3, page 4)

Constructing an Attack

Some Issues:

1. Can’t compute these distributions → use distributions over model losses:

2. May need many shadow models to estimate all distribution parameters →
assume 𝑸in and 𝑸out are Gaussian distributions

(Carlini et al., (2022), Equation 3, page 4)

Constructing an Attack

Some Issues:

1. Can’t compute these distributions → use distributions over model losses:

2. May need many shadow models to estimate all distribution parameters →
assume 𝑸in and 𝑸out are Gaussian distributions

3. Models’ losses/confidence are not inherently Gaussian

(Carlini et al., (2022), Equation 3, page 4)

Constructing an Attack

Some Issues:

1. Can’t compute these distributions → use distributions over model losses:

2. May need many shadow models to estimate all distribution parameters →
assume 𝑸in and 𝑸out are Gaussian distributions

3. Models’ losses/confidence are not inherently Gaussian → try to model
them as Gaussian:

(Carlini et al., (2022), Equation 3, page 4)

(Carlini et al., (2022), page 5)

Constructing an Attack

Online Attack:

(Carlini et al., (2022), Algorithm 1, page 6)

Constructing an Attack

Offline Attack:

● No training “in” models

● Assume (x, y) is not in the
training data

● Compare model
confidences relative to
confsout (further away =
less more likely to be in
the training data)

(Carlini et al., (2022), Algorithm 1, page 6) (Carlini et al., (2022), Equation 4, page 6)

Constructing an Attack

● Addition to the method: query multiple datapoint augmentations (e.g., image
augmentations) to improve attack accuracy

Constructing an Attack

Proposed attack’s advantage over LOSS:
accounts for more nuances in
loss/membership distribution

(Carlini et al., (2022), Figure 3, page 5)

Findings
Online and offline attack results are similar

(Carlini et al., (2022), Figures 5 and 6, page 7)

Findings
Scoring prior work using the proposed method:

(Carlini et al., (2022), Table 1, page 8)

Findings
Testing the proposed attack on other pretrained models - same architecture is helpful, but not necessary:

(Carlini et al., (2022), Figure 12, page 12)

Findings
Examples that are more out of distribution are more easily detectable in models (higher privacy
score = more detectable)

(Carlini et al., (2022), Figure 13, page 13)

Ablation Study

Logit Scaling
Number of

Shadow Models Queries Data Overlap
Model

Architectures and
Hyperparameters

Ablation Study
Logit Scaling:

(Carlini et al., (2022), Figure 8, page 10)

Number of Shadow Models:

(Carlini et al., (2022), Figure 9, page 10)

Ablation Study
Queries: Data Overlap:

(Carlini et al., (2022), Figure 10, page 11)

(Carlini et al., (2022), Table III, page 11)

Ablation Study
Architecture and Hyperparameters:

(Carlini et al., (2022), Figure 11, page 12)

Discussion (10 minutes)

● Much of the work performed in Carlini et al., (2022) assumed Gaussian distributions
for models and model confidences (and, for model confidences, transformed their
values to approximate a Gaussian distribution). Do you think this is a fair assumption
to make, and/or might there be negative effects of this assumption?

● Having reliable evaluation metrics for AI models is just as important as finding
techniques to make models safer and more reliable. What could future research into
safe/private/responsible AI do to ensure that both model development and evaluation
are robust/reliable?

How much “privacy” is
provided by our
defenses?

Selection of Privacy Parameter ε

● An acceptable amount of inferable information (ε) should be selected
carefully in real-world situations

● Privacy vs accuracy tradeoff
○ High ε: weaker privacy guarantees, more data utility
○ Low ε: stronger privacy guarantees, less data utility

● In reality, this parameter is often set as large as possible while still
guaranteeing some reasonable level of privacy

ε Derivation: Provable vs Empirical Privacy
Guarantees
● Privacy techniques with provable guarantees (generally Differential

Privacy) ensures an upper bound on ε through theoretical analysis

● Sometimes, theoretical analysis is not representative of the
real-world, leading to unreasonably high privacy constraints
○ Tends to sacrifice significant data utility to reach some

sufficiently low ε

ε Derivation: Provable vs Empirical Privacy
Guarantees
● Otherwise, techniques have empirical guarantees - measuring the

success rate of various attacks on our method to estimate an ε upper
bound

● More realistic and representative of real-world applications, but
provides weaker guarantees
○ As attacks adapt and evolve over time, estimated privacy

guarantees through empirical analysis may no longer hold
● With a good empirical strategy, we can provide a deeper analysis of

the level of privacy provided (estimate ε upper bound, demonstrate ε
lower bound)

Combining Provable and Empirical ε
Techniques
● We can empirically evaluate the privacy provided by differential

privacy - DP-SGD - to find a more realistic level of privacy provided
○ Is there a disparity between the theoretical and real-world

amount of privacy?

Evaluation experiment:

● If we have two nearly identical datasets, can we distinguish between
DP-SGD models trained on each?

Constructing the
Datasets

● With a base dataset, we can
construct a similar alternate through
data poisoning

● However, standard data poisoning
attacks generally have poor
performance on DP-SGD due to
gradient clipping
○ ClipBKD pushes points in the

direction of least variance to
maximize distance

Experimental Setup
● Fairly standard experimental setup to ensure applicability to

alternative dataset-model pairs
● Accuracy is maintained at 96-98% for consistency

● Two model types:
○ Two layer feed-forward neural

network
○ Logistic Regression model

● Three datasets:
○ Fashion MNIST
○ CIFAR10
○ Purchase100

Results

● Shrinking gap between the lower and worst-case upper bounds -
there might not be much more room for improvement in the amount of
privacy that can be realistically provided

● Empirical analyses can complement theoretical evaluation to find the
“true” level of privacy provided

Upper and Lower Bounds of Privacy

● Should organizations that deploy DP systems be required to perform
empirical privacy audits to avoid inaccurate privacy guarantees?
○ Are there downsides to this type of analysis?

● Assuming we can get an accurate estimation on the level of privacy
provided by our techniques, how transparent should companies be
with these privacy guarantees?

Discussion

References

Carlini, Nicholas, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
“Membership Inference Attacks From First Principles,” 2022. https://arxiv.org/abs/2112.03570.

Carlini, Nicholas, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. “The Secret Sharer:
Evaluating and Testing Unintended Memorization in Neural Networks,” 2019.
https://arxiv.org/abs/1802.08232.

Jagielski, Matthew, Jonathan Ullman, and Alina Oprea. “Auditing Differentially Private Machine
Learning: How Private Is Private SGD?,” 2020. https://arxiv.org/abs/2006.07709.

Shokri, Reza, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. “Membership Inference
Attacks against Machine Learning Models,” 2017. https://arxiv.org/abs/1610.05820.

https://arxiv.org/abs/2112.03570
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/2006.07709
https://arxiv.org/abs/1610.05820

