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Privacy in Machine Learning

Inference about members of the population: 

● “The model should reveal no more about the input to which it was applied than 
would have been known about this input without applying the model”

● Generalized models naturally uncover correlations for populations → unavoidable 
privacy breach

Inference about members of the training dataset

● Closely aligned with the motivations of differential privacy



What are Membership Inference Attacks

Given a data record and black-box access 
to a trained model, can an adversary 
determine if that record was part of the 
model’s training dataset?
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What are Membership Inference Attacks

Given a data record and black-box access 
to a trained model, can an adversary 
determine if that record was part of the 
model’s training dataset?

● Sensitive Data
● Machine Learning as a Service 

(MLaaS)



Generating Training Data 
for Shadow Models

Option 1: Model-Based Synthesis

1. Seach (using hill-climbing) the space of 
possible data records to identify inputs 
classified by the target model with high 
confidence.

2. Sample synthetic data from these records. 
Repeat until the training dataset is full.

Fix a class c

Reduce search diameter



Generating Training Data for Shadow Models

Option 2: Statistics Based Synthesis

● Knowledge of the marginal 
distributions of the features

● Generate synthetic records by 
sampling each feature 
independently according to its 
marginal distribution c

Option 3: Noisy, Real Data

● Attacker has access to similar 
data, but not identical 
("noisy" version),

● Simulate realistic conditions 
with data augmentation.



Training the Model

Option 2: Statistics Based Synthesis

● Knowledge of the marginal 
distributions of the features

● Generate synthetic records by 
sampling each feature 
independently according to its 
marginal distribution c

Option 3: Noisy, Real Data

● Attacker has access to similar 
data, but not identical 
("noisy" version),

● Simulate realistic conditions 
with data augmentation.

Split the attack training set 
into partitions for each class.

For each label, train a 
separate model that, given 
the prediction vector, 
predicts membership status.



Training the Model
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Training the Model

Attack 
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Results & Key Findings: Overall Attack 
Accuracy

CIFAR datasets

● CIFAR-10: 15,000 training 
records; test accuracy ~0.6

○ Attack average precision of 
0.74

● CIFAR-100: 29,540 training 
records; test accuracy ~0.2

○ Attack average precision of 
0.988

Texas Hospital dataset

● Google-trained model: training 
and test accuracies of 0.66 and 
0.51, respectively.

○ Attack precision was mostly 
above 0.6 and exceeded 0.85 
for over 20 classes. 

Location dataset 

● Google-trained mode: Perfect 
training accuracy and 0.66 test 
accuracy

● Attack’s precision ranged between 
0.6 and 0.8 with almost constant 
recall of 1.



Results & Key Findings: Comparison Across 
Platforms

Google models tended to leak more 
information than Amazon trained 
models. 

● Precession was 0.505 for 2 
classes and 0.935 for 100 
classes.

Lower attack precession on local 
model. 



Results & Key Findings: Shadow Model 
Training Data Quantity

The attack remains robust even with added noise: 

● Baseline attack precision: 0.678
● With 10% noise: precision drops to ~0.666
● With 20% noise: precision drops to ~0.613

Marginal-based Synthesis 

● Attack precision: 0.795

Model-based Synthesis

● 0.896 for most classes
● Some underrepresented classes had precision before 0.1



Results & Key Findings: Number of Classes 
and Training Distribution



Mitigations

1) Top-k filtering restricts the prediction vector to the 
top k classes 

2) Coarsening prediction precision by rounding the 
probabilities to fewer digits

3) Increasing the temperature parameter in the 
softmax layer produces a flatter probability 
distribution

4) Adding an L2 penalty     to the loss function to 
reduce overfitting, improving generalization while 
also reducing leakage



The Secret Sharer: 
Evaluating and Testing 
Unintended Memorization in 
Neural Networks
Carlini et al. (2018)



Unintended Memorization in Neural 
Networks

Neural networks, 
especially generative 

models, can memorize rare 
or unique training 

sequences

Sensitive data, like 
credit card numbers or 
private messages, may 

appear even if it’s 
uncommon

● This memorization is unintentional and 
often goes undetected during evaluation

● If exposed, attackers can extract actual 
training data content - not just infer 
presence



What Does Memorization Look Like?

● Imagine inserting “The secret code 
is 1234567890” into training data

● After training, prompt the model 
with: “The secret code is”

● If the model outputs exact match, 
has it memorized it?

● Need a way to measure how likely 
the model is to generate this exact 
phrase



Measuring Memorization: The Exposure 
Metric

● Insert unique, random “canary” 
sequences into training data

● After training, measure how likely the 
model is to generate the canary

● Exposure = how much more likely the 
canary is vs. random alternatives

● High exposure -> model likely 
memorized the sequence



Exposure to Extraction

● When exposure is high, memorized 
canaries can be recovered

● Brute-force search over all 
possibilities is too slow

● Authors develop a shortest-path 
search (Dijkstra-like) for efficient 
extraction

● Achieves up to 100,000x speedup 
over brute-force



Case Study: Google’s Smart Compose

● Smart Compose: Gmail’s autocomplete 
system trained on millions of user emails

● Inserted canaries 1 to 10,000 times during 
training

● Exposure increased with frequency, but 
canaries were not extractable

● Used exposure metric to tune privacy risk, 
e.g., via differential privacy 



Can We Prevent Memorization?

● Regularization techniques (e.g., dropout, weight decay): Ineffective
● Sanitization (e.g. blacklisting sensitive patterns): Helps, but incomplete
● Differential Privacy (DP-SGD): Only reliable defense

○ DP training eliminated memorization with only minor utility loss



Takeaways

● Neural networks can unintentionally memorize and leak rare training data
● The exposure metric quantifies this risk and enables real extraction
● Memorization occurs early in training and isn’t prevented by regularization
● Differential Privacy is the only proven defense that works



Discussion (10 minutes)

● Results show that some classes exhibit a much 
lower attack precision than others. Is this 
something researchers should disclose as well? 
If so, what things so far in the semester that we 
have discussed should be included in this 
disclosure

○ Where do we draw the line? 

● Do you think that companies which deploy 
generative language models (like Smart 
Compose) be required to audit for memorized 
secrets? Why or why not?

● What do you think about using black 
box APIs to train models and to be 
used in production? 

○ If you had a classification model in 
production would you share the entire 
prediction probability vector?

● How might membership inference 
attacks exacerbate existing biases in 
models trained on imbalanced datasets 
(e.g., criminal justice or hiring systems)?



Re-Evaluating Attack 
Evaluation

Carlini et al., (2022)



Prior Evaluation Technique: Averaging

Limitations: Treats all datapoints the same when they can have meaningful differences 
across certain dimensions 

False negatives (not very 
effective) vs false positives 

(very effective)

Larger chance of correctly 
randomly guessing vs 

smaller change of 
guaranteed correctness (not 

reflected in accuracy)



Approach

1. Propose an new evaluation technique
2. Construct an attack 
3. Evaluate Performance 
4. Ablation Study



Proposed Evaluation Technique

True positive rate (TPR) at a small false positive rate (FPR):

Small FPR 
ensures any 

positive labels 
are truly 
positive

Higher TPR 
indicates larger 
attack success

Not dependent 
on knowing the 
specific number 

of certain 
datapoints



Proposed Evaluation Technique

True positive rate (TPR) at a small false positive rate (FPR):

Small FPR 
ensures any 

positive labels 
are truly 
positive

Higher TPR 
indicates larger 
attack success

Not dependent 
on knowing the 
specific number 

of certain 
datapoints

Can be displayed using ROC curves



Constructing an Attack

Baseline Attack: LOSS

ℓ < threshold → ✓ In training data
ℓ > threshold → ✕ Not in training data

→ good at identifying non-training examples, bad at 
identifying training examples



Constructing an Attack

Baseline Attack: LOSS → Scores badly on proposed metric:

Carlini et al., (2022), Figure 2, page 4)



Constructing an Attack

Proposed Attack: Likelihood Ratio Attack (LiRA):

1. Train shadow models on datapoints
2. Compute Likelihood-ratio test to determine datapoint 

label



Constructing an Attack

1. Train shadow models on datapoints

For a given datapoint d:
● 𝑸in: distribution of models trained on d (50% of models)
● 𝑸out: distribution of models not trained on d (50% of models)



Constructing an Attack

2.   Compute Likelihood-ratio test to determine datapoint label

(Carlini et al., (2022), Equation 2, page 4)
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Constructing an Attack

Some Issues:

1. Can’t compute these distributions → use distributions over model losses:

2. May need many shadow models to estimate all distribution parameters → 
assume 𝑸in and 𝑸out are Gaussian distributions

3. Models’ losses/confidence are not inherently Gaussian → try to model 
them as Gaussian:

(Carlini et al., (2022), Equation 3, page 4)

(Carlini et al., (2022), page 5)



Constructing an Attack

Online Attack:

(Carlini et al., (2022), Algorithm 1, page 6)



Constructing an Attack

Offline Attack:

● No training “in” models

● Assume (x, y) is not in the 
training data

● Compare model 
confidences relative to 
confsout (further away = 
less more likely to be in 
the training data)

(Carlini et al., (2022), Algorithm 1, page 6) (Carlini et al., (2022), Equation 4, page 6)



Constructing an Attack

● Addition to the method: query multiple datapoint augmentations (e.g., image 
augmentations) to improve attack accuracy



Constructing an Attack

Proposed attack’s advantage over LOSS: 
accounts for more nuances in 
loss/membership distribution

(Carlini et al., (2022), Figure 3, page 5)



Findings
Online and offline attack results are similar

(Carlini et al., (2022), Figures 5 and 6, page 7)



Findings
Scoring prior work using the proposed method:

(Carlini et al., (2022), Table 1, page 8)



Findings
Testing the proposed attack on other pretrained models - same architecture is helpful, but not necessary:

(Carlini et al., (2022), Figure 12, page 12)



Findings
Examples that are more out of distribution are more easily detectable in models (higher privacy 
score = more detectable)

(Carlini et al., (2022), Figure 13, page 13)



Ablation Study

Logit Scaling
Number of 

Shadow Models Queries Data Overlap
Model 

Architectures and 
Hyperparameters



Ablation Study
Logit Scaling:

(Carlini et al., (2022), Figure 8, page 10)

Number of Shadow Models:

(Carlini et al., (2022), Figure 9, page 10)



Ablation Study
Queries: Data Overlap:

(Carlini et al., (2022), Figure 10, page 11)

(Carlini et al., (2022), Table III, page 11)



Ablation Study
Architecture and Hyperparameters:

(Carlini et al., (2022), Figure 11, page 12)



Discussion (10 minutes)

● Much of the work performed in Carlini et al., (2022) assumed Gaussian distributions 
for models and model confidences (and, for model confidences, transformed their 
values to approximate a Gaussian distribution). Do you think this is a fair assumption 
to make, and/or might there be negative effects of this assumption?

● Having reliable evaluation metrics for AI models is just as important as finding 
techniques to make models safer and more reliable. What could future research into 
safe/private/responsible AI do to ensure that both model development and evaluation 
are robust/reliable?



How much “privacy” is 
provided by our 
defenses?



Selection of Privacy Parameter ε

● An acceptable amount of inferable information (ε) should be selected 
carefully in real-world situations

● Privacy vs accuracy tradeoff
○ High ε: weaker privacy guarantees, more data utility
○ Low ε: stronger privacy guarantees, less data utility

● In reality, this parameter is often set as large as possible while still 
guaranteeing some reasonable level of privacy 



ε Derivation: Provable vs Empirical Privacy 
Guarantees
● Privacy techniques with provable guarantees (generally Differential 

Privacy) ensures an upper bound on ε through theoretical analysis

● Sometimes, theoretical analysis is not representative of the 
real-world, leading to unreasonably high privacy constraints 
○ Tends to sacrifice significant data utility to reach some 

sufficiently low ε



ε Derivation: Provable vs Empirical Privacy 
Guarantees
● Otherwise, techniques have empirical guarantees - measuring the 

success rate of various attacks on our method to estimate an ε upper 
bound

● More realistic and representative of real-world applications, but 
provides weaker guarantees
○ As attacks adapt and evolve over time, estimated privacy 

guarantees through empirical analysis may no longer hold
● With a good empirical strategy, we can provide a deeper analysis of 

the level of privacy provided (estimate ε upper bound, demonstrate ε 
lower bound)



Combining Provable and Empirical ε 
Techniques
● We can empirically evaluate the privacy provided by differential 

privacy - DP-SGD - to find a more realistic level of privacy provided 
○ Is there a disparity between the theoretical and real-world 

amount of privacy?

Evaluation experiment:

● If we have two nearly identical datasets, can we distinguish between 
DP-SGD models trained on each?



Constructing the 
Datasets

● With a base dataset, we can 
construct a similar alternate through 
data poisoning

● However, standard data poisoning 
attacks generally have poor 
performance on DP-SGD due to 
gradient clipping
○ ClipBKD pushes points in the 

direction of least variance to 
maximize distance



Experimental Setup
● Fairly standard experimental setup to ensure applicability to 

alternative dataset-model pairs
● Accuracy is maintained at 96-98% for consistency

● Two model types: 
○ Two layer feed-forward neural 

network
○ Logistic Regression model

● Three datasets:
○ Fashion MNIST
○ CIFAR10
○ Purchase100



Results



● Shrinking gap between the lower and worst-case upper bounds - 
there might not be much more room for improvement in the amount of 
privacy that can be realistically provided

● Empirical analyses can complement theoretical evaluation to find the 
“true” level of privacy provided

Upper and Lower Bounds of Privacy



● Should organizations that deploy DP systems be required to perform 
empirical privacy audits to avoid inaccurate privacy guarantees?
○ Are there downsides to this type of analysis?

● Assuming we can get an accurate estimation on the level of privacy 
provided by our techniques, how transparent should companies be 
with these privacy guarantees?

Discussion
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