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Privacy in Machine Learning

Inference about members of the population:

e “The model should reveal no more about the input to which it was applied than
would have been known about this input without applying the model”

e Generalized models naturally uncover correlations for populations — unavoidable
privacy breach

Inference about members of the training dataset

e Closely aligned with the motivations of differential privacy
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Generating Training Data
for Shadow Models

Option 1: Model-Based Synthesis

1. Seach (using hill-climbing) the space of
possible data records to identify inputs
classified by the target model with high
confidence.

2. Sample synthetic data from these records.
Repeat until the training dataset is full.

Algorithm 1 Data synthesis using the target model

procedure SYNTHESIZE(class : ¢) Fix a class c
x ¢ RANDRECORD() b initialize a record randomly

1:

2

3 ye <0

4 j<0

$: k  kypax

6 for iteration = 1---iter,,,, do

7 y & ftavget(x) D query the target model
8 if Y. = y. then b accept the record
9: if y. > conf,,;, and ¢ = argmax(y) then

10: if rand() < y. then B sample
11: return x b synthetic data
12: end if

13: end if

14: X' x

15: Ye & Ye

16: j<0

17: else

18: jei+1

19: if ] > rejma, then © many consecutive rejects
20: k < max(kymin, [k/2]) Reduce search diameter
21: j<0
22: end if
23: end if
24: x «+ RANDRECORD(X*, k) & randomize k features
25: end for
26: return L © failed to synthesize

27: end procedure




Generating Training Data for Shadow Models

Option 2: Statistics Based Synthesis

Knowledge of the marginal
distributions of the features
Generate synthetic records by
sampling each feature
independently according to its
marginal distribution ¢

Option 3: Noisy, Real Data

Attacker has access to similar
data, but not identical
("noisy" version),

Simulate realistic conditions
with data augmentation.



Training the Model
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Split the attack training set

Shadow Training Set 1

Shadow Model 1 }:

Shadow Test Set 1

~

“in” Prediction Set 1 |

“out” Prediction Set 1 |

Shadow Training Set k Shadow Model k&

Shadow Test Set k

‘l “in” Prediction Set k _

“out” Prediction Set k J

Attack Training Set

into partitions for each class.

For each label, train a
separate model that, given
the prediction vector,
predicts membership status.

——_

train()

[ Attack Model ]
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Training the Model

Subsets by Binary
true label Classifier

(y. ) {in, out}
Ctarget=1

(v, y) {in, out}
Ctarge’c=2

(v, y) {in, out}
C I R LA SN
target=n

*train *




Results & Key Findings: Overall Attack

Accuracy

CIFAR datasets

e CIFAR-10: 15,000 training

records; test accuracy ~0.6

o  Attack average precision of
0.74

e CIFAR-100: 29,540 training
records; test accuracy ~0.2

o  Attack average precision of
0.988

Texas Hospital dataset

e Google-trained model: training
and test accuracies of 0.66 and
0.51, respectively.

o  Attack precision was mostly
above 0.6 and exceeded 0.85
for over 20 classes.

Location dataset

e Google-trained mode: Perfect
training accuracy and 0.66 test
accuracy

e  Attack’s precision ranged between

0.6 and 0.8 with almost constant
recall of 1.



Results & Key Findings: Comparison Across
Platforms

Purchase Dataset, Membership Inference Attack

1 x x —
0o H Amazon (100,1e-4)
Amazon (10,1e-6) -
Google models tended to leak more § sl
information than Amazon trained i |
=
models. g
e Precession was 0.505 for 2 §
classes and 0.935 for 100 3
classes.
Lower attack precession on local ' N
model. Fig. 7: Precision of the membership inference attack against models

trained on the same datasets but using different platforms. The attack
model is a neural network.



Results & Key Findings: Shadow Model
Training Data Quantity

Purchase Dataset, Google, Membership Inference Attack

1
oaff: MapincBased S - - The attack remains robust even with added noise:
g 08
é 07 ° Baseline attack precision: 0.678
§ Z: e With 10% noise: precision drops to ~0.666
s 04 e  With 20% noise: precision drops to ~0.613
03
g 0z} Marginal-based Synthesis
04 s SR SO S
0 - - e  Attack precision: 0.795
0 02 04 06 038 1
Preasion
Fig. 9: Empirical CDF of the precision of the membership inference Model-based Synthesis

attack against the Google-trained model for the purchase dataset.
Results are shown for different ways of generating training data for
the shadow models (real, synthetic generated from the target model, o 0.896 for most classes

synthetic generated from marginal statistics). Precision of the attack fet

L g cgsses is 0.935 (mlgdm)_ 0.795 (marginal-based synthetic e Some underrepresented classes had precision before 0.1
data), and 0.896 (model-based synthetic data). The corresponding

recall of the attack is 0.994, 0.991, and 0.526, respectively.



Results & Key Findings: Number of Classes
and Training Distribution
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Fig. 11: Relationship between the precision of the membership inference attack on a class and the (train-test) accuracy gap of the target
model, as well as the fraction of the training dataset that belongs to this class. Each point represent the values for one class. The (train-test)
accuracy gap is a metric for generalization error [18] and an indicator of how overfitted the target model is.



Mitigations

Purchase dataset Testing Attack Attack Artack
Accuracy  Total Accuracy  Precision  Recall

No Mitigati 0.66 0.92 0.87 1.00

T:p k ;g; = 0.66 0.92 0.87 0.99

1)  Top-k filtering restricts the prediction vector to the Tk = 1 bl e A o s
Rounding d = 3 0.66 0.92 0.87 0.99

top k classes Rounding d = 1 0.66 0.89 0.83 1.00

. o o . Temperature £ = 5 0.66 088 0.86 0.93

2) Coarsening prediction precision by rounding the Tomperamo =20 | 048 o8 of o8

= € - ! ol o .

probabilities to fewer digits e e i B

3) Increasing the temperature parameter in the Hospital dataset | Testing Attack Attack  Attack
. Accuracy  Total Accuracy  Precision _ Recall

softmax layer produces a flatter probability No Mitigation 0.55 083 077____095

Topk =3 0.55 0.83 0.77 0.95

1 1 1 Topk=1 0.55 0.82 0.76 0.95
distribution mizie lox 1 e 6

4) Adding an L2 penalty AZ©;? the loss function to Raosding =1 s ol 475 nios
.. . . . . . Temperature ¢t = 5 0.55 0.79 0.77 0.83

reduce overfitting, improving generalization while Temperature ¢ = 20 | 0.5 076 076 076
2A=1le-4 0.56 0.80 0.74 0.92

1 I2A=5e~4 0.57 0.73 0.69 0.86

al.SO redUC|ng Leakage 2= 12—3 0.56 0.66 0.64 0.73
I2A=5e~3 0.35 0.52 0.52 0.53

TABLE III: The accuracy of the target models with different mitiga-
tion techniques on the purchase and Texas hospital-stay datasets (both
with 100 classes), as well as total accuracy, precision, and recall of
the membership inference attack. The relative reduction in the metrics
for the attack shows the effectiveness of the mitigation strategy.



The Secret Sharer:
Evaluating and Testing
Unintended Memorization in
Neural Networks

Carlini et al. (2018)



Unintended Memorization in Neural
Networks

o —o .

. This memorization is unintentional and
&- 1= often goes undetected during evaluation
ceeeeseeeett If exposed, attackers can extract actual
training data content - not just infer

o

presence
Neural networks, Sensitive data, like
especially generative credit card numbers or
models, can memorize rare  private messages, may
or unique training appear even if it's

sequences uncommon



What Does Memorization Look Like?

Definition 1 The log-perplexity of a sequence x is

Pxe(xl...x,,) = —logzPr(xl...x,,|fe)

e Imagine inserting “The secret code i log, Pr(xifo )
. 9 . .. = —10g XilJo(X1...Xi—1
is 1234567890" into training data s 2T '

e After training, prompt the model
with: “The secret code is”

Highest Likelihood S Log-Perplexi

e If the model outputs exact match, = o oy

The random number is 281265017 14.63

has it memorized it? The random number is 281265117 18.56

The random number is 281265011 19.01

° Need a way to measure how [|ke[y The random number is 286265117 20.65
. . The random number is 528126501 20.88

the model is to generate this exact The random number is 281266511 20.99

The random number is 287265017 20.99

p h rase The random number is 281265111 21.16

The random number is 281265010 21.36

Table 1: Possible sequences sorted by Log-Perplexity. The
inserted canary— 281265017—has the lowest log-perplexity.
The remaining most-likely phrases are all slightly-modified
variants, a small edit distance away from the canary phrase.



Canary exposure in trained model

Measuring Memorization: The Exposure
Metric

—— Hyperparameters A
—— Hyperparameters B

0 2 4 6 8
Repetitions of canary in training data

Insert unique, random “canary”
sequences into training data

After training, measure how likely the
model is to generate the canary
Exposure = how much more likely the
canary is vs. random alternatives
High exposure -> model likely
memorized the sequence



Exposure to Extraction

e \When exposure is high, memorized ﬁ
canaries can be recovered o

e Brute-force search over all
possibilities is too slow

e Authors develop a shortest-path
search (Dijkstra-Llike) for efficient

perplexity=4.64 perplexity=1.47 perplexity=1.73 perplexity=1.73

extraction
e Achieves up to 100,000x speedup Figul:e 9: An example to illustrate the .shortest path sea{ch
algorithm. Each node represents one partially generated string.
over brute-force Each edge denotes the conditional probability Pr(x;|x;...x;_1).

The path to the leaf with minimum perplexity is highlighted,
and the log-perplexity is depicted below each leaf node.



Exposure

Case Study: Google’s Smart Compose

—— Length-5 Sequence
—— Length-7 Sequence

0

2000 4000 6000 8000 10000
Number of Insertions

Smart Compose: Gmail's autocomplete
system trained on millions of user emails
Inserted canaries 1 to 10,000 times during
training

Exposure increased with frequency, but
canaries were not extractable

Used exposure metric to tune privacy risk,
e.g., via differential privacy



Can We Prevent Memorization?

e Regularization techniques (e.g., dropout, weight decay): Ineffective
e Sanitization (e.g. blacklisting sensitive patterns): Helps, but incomplete
e Differential Privacy (DP-SGD): Only reliable defense

o DP training eliminated memorization with only minor utility loss



Takeaways

Neural networks can unintentionally memorize and leak rare training data
The exposure metric quantifies this risk and enables real extraction
Memorization occurs early in training and isn’t prevented by regularization
Differential Privacy is the only proven defense that works



Discussion (10 minutes)

What do you think about using black
box APls to train models and to be

used in production?
o If you had a classification model in
production would you share the entire
prediction probability vector?

How might membership inference
attacks exacerbate existing biases in
models trained on imbalanced datasets
(e.g., criminal justice or hiring systems)?

Results show that some classes exhibit a much
lower attack precision than others. Is this
something researchers should disclose as well?
If so, what things so far in the semester that we
have discussed should be included in this

disclosure
o Where do we draw the line?

Do you think that companies which deploy
generative language models (like Smart
Compose) be required to audit for memorized
secrets? Why or why not?



Re-Evaluating Attack
Evaluation
Carlini et al., (2022)



Prior Evaluation Technique: Averaging

Limitations: Treats all datapoints the same when they can have meaningful differences
across certain dimensions

Larger chance of correctly

False negatives (not very randomly guessing vs
effective) vs false positives smaller change of
(very effective) guaranteed correctness (not

reflected in accuracy)




Approach

Propose an new evaluation technique
Construct an attack

Evaluate Performance

Ablation Study

W =



Proposed Evaluation Technique

True positive rate (TPR) at a small false positive rate (FPR):

| T

Small FPR Not dependent

ensures any Higher TPR on knowing the

positive labels indicates larger specific number
are truly attack success of certain

positive datapoints




Proposed Evaluation Technique

True positive rate (TPR) at a small false positive rate (FPR):

| T

Small FPR
ensures any
positive labels
are truly
positive

Higher TPR
indicates larger
attack success

Not dependent

on knowing the

specific number
of certain
datapoints

Can be displayed using ROC curves




Constructing an Attack

Baseline Attack: LOSS

£ < threshold — v In training data
£ > threshold — X Not in training data

— good at identifying non-training examples, bad at
identifying training examples



Constructing an Attack

Baseline Attack: LOSS — Scores badly on proposed metric:

1.0 —
/’ [
£ 0.8 e £ 10!
o ,/ o
206 Al 2
§ ,/ g
& 0.4 A & 10734
3 4 3
= 0.2 =
. . : 103 . .
0.25 0.50 0.75 1.00 10=58 103 1071
False Positive Rate False Positive Rate
(a) linear scale (b) log scale

Fig. 2: ROC curve for the LOSS baseline membership infer-
ence attack, shown with both linear scaling (left), also and
log-log scaling (right) to emphasize the low-FPR regime.

Carlini et al., (2022), Figure 2, page 4)



Constructing an Attack

Proposed Attack: Likelihood Ratio Attack (LIRA):

1. Train shadow models on datapoints

2. Compute Likelihood-ratio test to determine datapoint
label



Constructing an Attack

1. Train shadow models on datapoints

For a given datapoint d:

e () :distribution of models trained on d (50% of models)
e () . distribution of models not trained on d (50% of models)



Constructing an Attack

2. Compute Likelihood-ratio test to determine datapoint label

p(f | Qun(z,y))
p(f | Qouw(z,y)) ,

(Carlini et al., (2022), Equation 2, page 4)

Az = 2)




Constructing an Attack

Some Issues:

1. Can’t compute these distributions
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Constructing an Attack

Some Issues:

1. Can’t compute these distributions — use distributions over model losses:

p(f(f(il?), y) [ Qin/out (;1;7 y)) (3)  (Carlinietal, (2022), Equation 3, page 4)

2. May need many shadow models to estimate all distribution parameters —
assume Q. and @_ . are Gaussian distributions

3. Models’ losses/confidence are not inherently Gaussian — try to model
them as Gaussian:

s p =
o(p) = log (E) , forp=f(z), (Carlini et al, (2022), page 5)



Constructing an Attack

Online Attack:

Algorithm 1 Our online Likelihood Ratio Attack (LiRA).
We train shadow models on datasets with and without the
target example, estimate mean and variance of the loss dis-
tributions, and compute a likelihood ratio test. (In our offline
variant, we omit lines 5, 6, 10, and 12, and instead return
the prediction by estimating a single-tailed distribution, as is
shown in Equation (4).)
Require: model f, example (z,y), data distribution D

1: confsy, = {}

2. confsoy = {}

3: for N times do

4 Dattack <D > Sample a shadow dataset
5. fin < T (Datack U {(,9)}) > train IN model
6 confs;, < confsyy U {&(fin(2)y)}

7 Jout = T (Datack\{(z,9)}) > train OUT model
8 confsey <— confsoye U {P( four()y)}

9: end for

10: ftin ¢ mean(confsi,)

11: fiout < mean(confsoy)

12: 02, + var(confsi,)

13: 02, + var(confsoy)

14: confops = O(f(x)y) > query target model

p(confops | N (pin, 02))
p(confops | N (touts 02))

15 return A =

(Carlini et al., (2022), Algorithm 1, page 6)



Constructing an Attack

Algorithm 1 Our online Likelihood Ratio Attack (LiRA).
We train shadow models on datasets with and without the
target example, estimate mean and variance of the loss dis-
. tributions, and compute a likelihood ratio test. (In our offline
Offline Attack: variant, we omit liﬁes 5, 6, 10, and 12, and instead return
the prediction by estimating a single-tailed distribution, as is
shown in Equation (4).)
Require: model f, example (z,y), data distribution D
1: confs;, = {}
e Assume (x, y)isnotinthe 2 confso = {}

training data 3: for N times do
4 Daitadc 5D > Sample a shadow dataset

e No training “in” models

e Compare model T
. . 7: out attac T,y > train OUT model
confidences relative to € ot Confksom B

confs_ . (further away = 9. end for
less more likely to be in
the training data)

11: fiout < mean(confSoy)

2

13: 05y, < var(confsoy)

14: confops = O(f(z)y) > query target model

) A=1-PiZ > o(f(2)y)], Where Z ~ N(jiou 0%) - @)
(Carlini et al., (2022), Equation 4, page 6)

15: return

(Carlini et al., (2022), Algorithm 1, page 6)



Constructing an Attack

e Addition to the method: query multiple datapoint augmentations (e.g., image
augmentations) to improve attack accuracy



Constructing an Attack

Proposed attack’s advantage over LOSS:
accounts for more nuances in
loss/membership distribution

member I non-member
200

easy to fit / inlier easy to fit / outlier

bird do,
S R
0 __.*— , ||IIIIII|“|||||1|||... : L

200 : :
hard to fit / inlier hard to fit / outlier
airplane truck
100 # 4
0 T . ull”'““lm 3 L
1072 100 10-5 100

Fig. 3: Some examples are easier to fit than others, and some
have a larger separability between their losses when being
a member of the training set or not. We train 1024 models
on random subsets of CIFAR-10 and plot the losses for four
examples when the example is a member of the training set
(Qin(z, ), in red) or not (Quy(z,y), in blue).

(Carlini et al., (2022), Figure 3, page 5)



Findings

Online and offline attack results are similar
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107% 5 o = |mageNet, auc=0.765 107 5 = \WikiText-103, auc=0.713
= WikiText, auc=0.715 | 1 _»°  eeees Online
1075 z 10~5 z
1075 10~4 1073 1072 107! 10° 1072 1073 1072 107! 10°

False Positive Rate

Fig. 5: Success rate of our attack on CIFAR-10, CIFAR-
100, ImageNet, and WikiText. All plots are generated with
256 shadow models, except ImageNet which uses 64.

False Positive Rate

Fig. 6: Success rate of our offline attack on CIFAR-
10, CIFAR-100, ImageNet, and WikiText. All plots are
generated with 128 OUT shadow models, except ImageNet

which uses 32. For each dataset, we also plot our online attack
with the same number of shadow models (half IN, half OUT).

(Carlini et al., (2022), Figures 5 and 6, page 7)



Findings

Scoring prior work using the proposed method:

) 2 =
_§ é §-§ " % g'fg’ TPR @ 0.001% FPR TPR @ 0.1% FPR Balanced Accuracy
< = L5 <
Method 8 B2 ©8 E& C10 C100 WTI103 C10 C-100 WTI103 C-10 C-100 WTI103
Yeom et al. [70] O O O O 0.0% 0.0%  0.00% 0.0% 0.0% 0.1% 59.4% 78.0%  50.0%
Shokri et al. [60] & O  J O 0.0% 0.0% - 03% 1.6% - 59.6% 74.5% -
Jayaraman et al. [25] O ] O O 0.0% 0.0% - 0.0% 0.0% - 594% 76.9% -
Song and Mittal [61] @ O ® O 0.0% 0.0% - 0.1% 1.4% - 595% T71.3% -
=) Sablayrolles et al. [56] @ O ® ® 0.1% 0.8% 001% 1.7% 7.4% 1.0% 563% 69.1%  65.7%
Long et al. [37] ® O L] ® 0.0% 0.0% - 22% 4.7% - 535% 54.5% -
=) Watson et al. [68] ® O ® ] 0.1% 09%  0.02% 1.3% 5.4% 1.1% 59.1% 70.1%  65.4%
Ye et al. [69] & O { L ] = ) - - - - 603% 769%  65.5%
Ours [ @ L ® 22% 112% 0.09% 84% 27.6% 14% 63.8% 82.6%  65.6%

TABLE I: Comparison of prior membership inference attacks under the same settings for well-generalizing models on
CIFAR-10, CIFAR-100, and WikiText-103 using 256 shadow models. Accuracy is only presented for completeness; we do not
believe this is a meaningful metric for evaluating membership inference attacks. Full ROC curves are presented in Appendix A.

(Carlini et al., (2022), Table 1, page 8)



Findings

Testing the proposed attack on other pretrained models - same architecture is helpful, but not necessary:

10° 3 Shad i

o E adow model architecture

8. 1 8 VGG16 'V ResNet34 Ml DenseNet121 @ MobileNet-v2

o {1 A ResNet18 <« ResNet50 ® Inception-v3
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Target model architecture

Fig. 12: Our attack succeeds against real state-of-the-art
CIFAR-10 models [51]. The attacker trains shadow models
on a random subset of 50,000 points from the entire CIFAR-
10 dataset. The attack performs best when the shadow models
have the same architecture as the target model, but training
different models still leads to a strong attack.

(Carlini et al., (2022), Figure 12, page 12)



Findings

Examples that are more out of distribution are more easily detectable in models (higher privacy
score = more detectable)

Bl CIFAR-10, Correct Labels
400 CINIC-10, Correct Labels
[ CIFAR-100, Random Labels

m CIFAR-10, Random Labels

300 A

Frequency

0 1 2 3 4 5
Privacy score

Fig. 13: Out-of-distribution training examples are less private.

(Carlini et al., (2022), Figure 13, page 13)



- Ablation Study

Model
Architectures and
Hyperparameters




Ablation Study

Logit Scaling:
10° 3
1071 3
8 1. e
c‘;:“ +=
o 1072 4
2
0_8 10-3 + === f(x)y (confidence)
Y = log(f(z)y) (CE loss)
[ ] ,/, = $(f(z))y) (logit scale, unstable)
104 4 o | &(f(x))y), (logit scale, stable)
3 /// z(x)y (output feature)
. 7] = z(x)y —max(z(z),) (Hinge)
10~ L B LI L) B B R L |

105+ 10~ 1073 1072 107!

False Positive Rate

(Carlini et al., (2022), Figure 8, page 10)

10°

Fig. 8: The best scoring metrics ensure the output distribution
is approximately Gaussian, and the worst metrics are not easily
modeled with a standard distribution (see Figure 4).

Number of Shadow Models:

0.12

=== Gaussian LRT with per-example variance
0.104|*=*=m Gaussian LRT with global variance

—==non-parametric (Sablayrolles et al.)
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Fig. 9: Attack success rate increases as the number of shadow
models increases, with the benefit eventually tapering off.
When fewer than 64 models are used, it is better to estimate
the variance of the model confidence as a global parameter
instead of computing it on a per-example basis.

(Carlini et al., (2022), Figure 9, page 10)



Ablation Study

Queries:

TPR @ FPR
Queries 0.1% 0.001%
1 (no augmentations) 5.6% 1.0%
2 (mirror) 7.5% 1.8%
18 (mirror + shifts) 8.4% 2.2%
162 (mirror + shifts)  8.4% 2.2%

TABLE III: Querying on augmented versions of the image
doubles the true-positive rate at low false-positive rates, with

most benefits given by just two queries.

(Carlini et al.,, (2022), Table Ill, page 11)
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Fig. 10: The attack’s success rate on CINIC-10 remains un-
changed when the training sets of shadow models are sampled
from a dataset Diygack that is disjoint from the target model’s
training set Dyg,n. The attack’s performance does decrease
when the two datasets are sampled from different distributions.

(Carlini et al., (2022), Figure 10, page 11)



Ablation Study

Architecture and Hyperparameters:

Target model architecture

(a) Vary model architecture.

Target model optimizer

(b) Vary training optimizer.
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Target model augmentation

(c) Vary data augmentation.

Fig. 11: Our attack succeeds when the adversary is uncertain of the target model’s training setup. We vary the target model’s
architecture (a), the training optimizer (b) and the data augmentation (c), as well as the adversary’s guess of each of these
properties when training shadow models. The attack performs best when the adversary guesses correctly (black-lined markers).

(Carlini et al., (2022), Figure 11, page 12)



Discussion (10 minutes)

e Much of the work performed in Carlini et al., (2022) assumed Gaussian distributions
for models and model confidences (and, for model confidences, transformed their
values to approximate a Gaussian distribution). Do you think this is a fair assumption
to make, and/or might there be negative effects of this assumption?

e Having reliable evaluation metrics for Al models is just as important as finding
techniques to make models safer and more reliable. What could future research into
safe/private/responsible Al do to ensure that both model development and evaluation
are robust/reliable?



How much “privacy” is
provided by our
defenses?



Selection of Privacy Parameter ¢

e An acceptable amount of inferable information (€) should be selected
carefully in real-world situations
e Privacy vs accuracy tradeoff
o High &: weaker privacy guarantees, more data utility
o Low ¢€: stronger privacy guarantees, less data utility

e Inreality, this parameter is often set as large as possible while still
guaranteeing some reasonable level of privacy



€ Derivation: Provable vs Empirical Privacy
Guarantees

e Privacy techniques with provable guarantees (generally Differential
Privacy) ensures an upper bound on € through theoretical analysis

e Sometimes, theoretical analysis is not representative of the
real-world, leading to unreasonably high privacy constraints
o Tends to sacrifice significant data utility to reach some
sufficiently low €



€ Derivation: Provable vs Empirical Privacy
Guarantees

e Otherwise, techniques have empirical guarantees - measuring the
success rate of various attacks on our method to estimate an € upper
bound

e More realistic and representative of real-world applications, but
provides weaker guarantees

o As attacks adapt and evolve over time, estimated privacy
guarantees through empirical analysis may no longer hold

e \With a good empirical strategy, we can provide a deeper analysis of
the level of privacy provided (estimate € upper bound, demonstrate €
lower bound)



Combining Provable and Empirical €
Techniques

e \We can empirically evaluate the privacy provided by differential
privacy - DP-SGD - to find a more realistic level of privacy provided
o s there a disparity between the theoretical and real-world
amount of privacy?

Evaluation experiment:

e If we have two nearly identical datasets, can we distinguish between
DP-SGD models trained on each?



Constructing the
Datasets

e \With a base dataset, we can
construct a similar alternate through
data poisoning

e However, standard data poisoning
attacks generally have poor
performance on DP-SGD due to
gradient clipping

o ClipBKD pushes points in the
direction of least variance to
maximize distance

ClipBKD




Experimental Setup

e Fairly standard experimental setup to ensure applicability to
alternative dataset-model pairs
e Accuracy is maintained at 96-98% for consistency

e Two model types: e Three datasets:
o Two layer feed-forward neural o Fashion MNIST
network o CIFAR10
o Logistic Regression model o Purchasel00

Dataset | Epochs Learning Rate Batch Size /#2 Regularization

FMNIST 24 0.15 250 0
CIFAR10 | 20 0.8 500 0
P100 100 ). 250 1074 7 1072
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Upper and Lower Bounds of Privacy

Estimated &

Shrinking gap between the lower and worst-case upper bounds -
there might not be much more room for improvement in the amount of

privacy that can be realistically provided
Empirical analyses can complement theoretical evaluation to find the

“true” level of privacy provided
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Discussion

e Should organizations that deploy DP systems be required to perform
empirical privacy audits to avoid inaccurate privacy guarantees?
o Are there downsides to this type of analysis?

e Assuming we can get an accurate estimation on the level of privacy
provided by our techniques, how transparent should companies be
with these privacy guarantees?
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