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What Are Adversarial Samples?

●  Definition: Inputs modified to trick AI models into errors.

● Example: Slightly altered images misclassified by DNNs.

●  Impact: Security risks (e.g., autonomous vehicles, malware detection).
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57% confidence

“Catˮ
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Modify



Defensive Distillation: Protecting DNNs from 
Adversarial Attacks



Why Are DNNs Vulnerable?

● High Sensitivity: Small input changes cause large output shifts.

●  Attack Methods:
○ Fast Gradient Sign Method FGSM. [Perturbs inputs along gradient direction.]

○ Jacobian-based Saliency Map Attack. [Exploit model’s input-output sensitivity.]

● Goal: Minimize perturbations to evade detection.



Solution: Defensive Distillation

●  Inspiration: Knowledge transfer between DNNs.

●  Process:
○ Train initial model with high-temperature softmax.
○ Use soft labels (probabilities) to retrain the same model.

●  Result: Smoother decision boundaries, reduced gradients.



How Distillation Reduces Sensitivity

● Key Idea: High temperature T) in softmax smooths outputs.

● Effect:
○ Gradients used in attacks reduced by 1030

○ Perturbations require 8x more features to succeed.

●  Result: Smoother decision boundaries, reduced gradients.



Datasets

CIFAR10MNIST



Experimental Results 

●  Attack success rate drops down quickly with 
distillation temperature



Experimental Results 

● Influence of distillation on accuracy and robustness



Why Does Temperature Matter? 

● Higher T
○ Smoother probability distributions.

■ Low T T1 Spiky (e.g., 0.01, 0.93, 0.06.
■  High T T20 Smooth (e.g., 0.3, 0.4, 0.3.

○ Hiding sensitive gradients, thus lowering adversarial gradients.

●  Trade-off: Very high T may slightly reduce accuracy 1.5%.



Practical Implications

● Security: Harder for adversaries to craft stealthy attacks.

●  Usability: Minimal impact on model accuracy.

●  Applications: Critical systems (healthcare, finance, IoT.

Healthcare Autonomous Vehicles Finance



Conclusion

● Key Takeaways:
○ Defensive distillation drastically reduces attack success rates.
○ Increases robustness by requiring larger perturbations.
○ Easy to implement with existing DNN architectures.

●  Future Work: Extend to non-DNN models, real-world testing.



Discussion

● Does distillation work for all attack types?

● How to choose the best temperature?



Provable Defenses via the Convex Outer 
Adversarial Polytope



Existing Adversarial Defenses & Limitations

Most existing defenses fail against stronger adversarial attacks due to computational 
inefficiency or lack of provable guarantees.

● SMT & Integer Programming: Exact optimization methods to verify robustness. Not 
scalable for large networks.

● Regularization-Based Defenses: Reduces adversarial vulnerability by controlling 
model sensitivity via weight constraints. Provides no provable robustness 
guarantee



Convex Outer Approximation

Why is the adversarial polytope non-convex?

● Neural networks, particularly with ReLU activations, introduce complex decision boundaries, 
making adversarial regions highly non-convex.

● This complexity makes robustness verification difficult.

How does convex approximation help?

● Instead of working with a complex, non-convex region, we over-approximate it with a convex 
shape.

● This allows us to solve adversarial robustness verification as a linear program LP.



Efficient Optimization via Dual Networks

Instead of solving the original optimization problem directly, we transform it into a dual 
problem that can be efficiently solved using a neural network structure.

● Reformulate the problem in dual form, where it can be optimized efficiently using 
gradient-based methods.

● Reformulate the problem in dual form, where it can be optimized efficiently using 
gradient-based methods.



Computing Activation Bounds

ReLU function is non-convex 

→ Relax it using convex approximation

● Bounding the activation range [ℓ,u] 
enables efficient robustness 
verification.

● Convex relaxation transforms ReLU 
into a tractable linear constraint, 
ensuring provable adversarial 
robustness.

Why does tight bounding matter?

● Looser bounds allow greater adversarial 
freedom, making attacks easier.

● Tighter bounds ensure robust 
classification, reducing adversarial 
vulnerability.



Efficient Robust Optimization

● Traditional deep networks minimize the loss at given data points. Robust 
optimization instead minimizes the worst-case loss over an ϵ-ball of perturbations.

● The goal is to ensure the classifier remains robust under adversarial attacks.

● Outer maximization seeks the worst perturbation.
● Inner minimization trains the network to be robust against such perturbations.



Adversarial Guarantees

● Corollary 1 Robust Error Bound Certification of Robustness)
○ If this inequality holds, no perturbation                    can make the model 

misclassify x
○ The robust error measures how many samples do not satisfy this guarantee, 

meaning they could still be attacked

● Corollary 2 Detecting Adversarial Examples
○ This method allows us to detect adversarial examples at test time, preventing 

attacks before they reach deployment.
○ Unlike traditional defenses, this provides a formal guarantee—every real attack 

will be detected.



Experimental Results

● Robust models significantly reduce adversarial vulnerability.
● Certified robust error bounds accurately reflect adversarial robustness.
● There is a trade-off: slightly higher test error, but major gains in adversarial defense.



Scaling Provable Adversarial Defenses



Key Definitions and Current Methods

● In recent years, it has become possible to create deep learning models that come 
with formal guarantees of robustness against adversarial examples backed by 
proofs that ensure they will remain robust under certain conditions

Early Methods
● Provable guarantees have only been possible for reasonably small sized networks
● Only worked for simple feedforward networks with linear layers followed by 

activations like ReLU

Progress has been made toward tackling the challenge of scaling provable defenses to 
deeper, more complex architectures



Extending Provable Robustness for General Networks

A k-layer neural network is represented as: 

Adversarial Problem Formulation: goal is to make the network robust to perturbations
Perturbation Set: An adversary tries to slightly alter input (x). Perturbations are 
constrained within a small 𝝐-bounded set:

The adversary aims to minimize the modelʼs confidence by finding the worst case 
perturbation Δ that maximizes the loss: 



Leveraging Fenchel Duality

● Uses Fenchel duality to derive provably robust bounds as a dual optimization task

● Each network operation has its own dual formation
● By applying Fenchel Duality to each operation, the dual of the entire network can 

be constructed by combining these modular components
● Reduces the problem of bounding adversarial loss to analyzing the dual form of 

individual layers
The adversarial problem is lower-bounded as:



Efficient Bound Computation

Earlier methods computed the upper bound by calculating the contributions from every 
hidden unit, resulting in quadratic complexity. For ReLU networks with l∞ bounded 
perturbations, the computation of the l1 norm requires individual unit processing which 
is costly

Solution:
● Introducing nonlinear random projections to approximate these l1 terms, reducing 

complexity from quadratic to linear
● The upper bound on robust loss is estimated efficiently, scaling linearly with the 

number of hidden units, making robust training feasible for larger models



Cauchy Random Projection

● Cauchy random projections are heavy-tailed making them ideal for   
approximating l1 norms using random projections

Estimating the l1 Norm:
● Let 𝜈1 represent the dual networks first layer, and R be a Cauchy random matrix
● L1 norm can be approximated as: 

● For terms involving ReLU activations and perturbations:

● Random projections eliminate the need to explicitly pass each hidden unit through 
the dual network, saving computation time while maintaining the robustness 
bounds



Cascading Models

Problem: Robust training can over-regularize networks, reducing their accuracy on 
clean inputs

Robust Cascade: instead of training a single robust classifier, the cascade trains 
multiple classifiers sequentially
● Each classifier in the sequence focuses on examples that the previous classifiers 

failed to certify as robust
1. Train the first model on the full dataset (f1)
2. Filter Certified Examples
3. Train the next model (f2 only on the uncertified examples of f1)
4. Continue this process training more models refining robust predictions



Why Cascades Work

● Earlier models in the cascade handle easy to certify examples, leaving more 
challenging examples for later models to specialize in

● Reduces the burden on each individual model
● Reduces verified robust error significantly compared to single robust classifier
● Allows the use of smaller more efficient models without sacrificing robustness



Experimentation Results

Standard - error rate on the original, unperturbed dataset (clean inputs)

● For MNIST Model achieves error of 3.7% and on best cascade 3.13% 
(previous 5.8%

● For CFAR Model achieves best error of 46.1% and 36.4% (previous 80%



Results Cont.



Discussion

● How do cascade models help reduce bias in robust training? Can you 
think of any other technique that could complement cascade models 
to achieve better results?

● While cascade models improve robustness, they also increase 
non-robust error. How would you assess whether this trade-off is 
acceptable for different applications?

● What steps can be taken to ensure fairness and prevent bias when 
enhancing adversarial robustness in deep learning models as 
robustness improvements may not be uniformly effective across 
different data subgroups?



Key Improvements

Extending Robust Training to Larger Networks:
● Generalizes the approach to more complex architectures including 

those with skip connections and non linear movement
● Utilizes a modular technique to apply methods automatically to any 

network structure
Improved Computational Efficiency
● Reduces the complexity to linear, making robust training much more 

scalable
Cascade Models
● Introduces cascade models to improve robustness which involves 

training multiple stages of classifiers where each stage handles the 
examples the previous stage could not classify robustly. 



TRAINING DEEP LEARNING MODELS 
FOR ADVERSARIAL RESISTANCE



How Can We Train Deep Neural Networks 
that are Robust to Adversarial Inputs?

● Natural saddle point (min-max) formulation

● Inner Maximization Problem
○ Aims to find an adversarial version of a given data point x that achieves a 

high loss
● Outer Minimization Problem

○ Aims to find model parameters so the “adversarial lossˮ given by the inner 
attack problem is minimized

● Allows for resistance against a broad class of attacks rather than defending 
against only specifically known attacks



Goals

● How can we produce strong adversarial examples, i.e., adversarial examples that 
fool a model with high confidence while requiring only a small perturbation?

● How can we train a model so that there are no adversarial examples, or at least so 
that an adversary cannot find them easily?

● Goal: Attaining small adversarial loss gives a guarantee that no allowed attack will 
fool the network



Inner Maximization Problem

● Corresponds to finding an adversarial example for a given network and data point

● Goal: To produce adversarial examples that fool a model with high confidence 
while only requiring a small perturbation

● Requires us to maximize a highly non-concave function
○ Found using Projected Gradient Descent PGD) which produces adversarial 

examples



Finding Adversarial Examples

● Final loss values on adversarially trained networks are significantly smaller than their 
standard counterparts

● Local maxima found by PGD all have similar loss values



Outer Minimization Problem

● Goal: To find model parameters that minimize the “adversarial loss ,ˮ the value of 
the inner maximization problem

● Method for minimizing the loss function: Stochastic Gradient Descent SGD
○ Replace the input points by their corresponding adversarial perturbations and 

train the network on the perturbed input
○ Apply SGD to reduce the loss of the saddle point problem during training



Crucial Component for Adversarial Robustness: Capacity

● Increasing the capacity of the network when training increases robustness
● Small capacity networks sacrifice performance on natural examples to provide 

any kind of robustness against adversarial inputs
○ Network converges to always predicting a fixed class

Linear Decision 
Boundary

Red stars represent 
misclassified 

adversarial examples
Robust to Adversarial 

Examples



Experiments

● Two Key Elements
○ Train a sufficiently high capacity network
○ Use the strongest possible adversary

■ Adversary of Choice: Projected Gradient Descendant PGD
● Performance increased when given a higher-capacity network



Model Performance Against Different Adversaries

● The MNIST dataset had higher accuracy compared to the CIFAR10 dataset

MNIST CIFAR10



Limitations

● Having a large capacity network is computationally expensive

● Accuracy of networks on different datasets yields differing results
○ High accuracy on MNIST dataset, yet same level of performance not reached 

on the CIFAR10 dataset
○ Need to evaluate on more datasets



Discussion Questions

● Can adversarial training fully eliminate adversarial vulnerabilities, or will attackers 
always find stronger methods?

● How does adversarial robustness relate to real-world security applications (e.g., 
autonomous vehicles, biometric authentication)?

● What are the ethical considerations of adversarial attacks and defenses? Could 
there be unintended consequences of deploying robust models?



Theoretically Principled Trade-Off Between 
Robustness and Accuracy



Motivation

● Vulnerable to adversarial attacks
● Can we design models that are both robust and accurate? 



Key Idea - Robustness vs. Accuracy

● Natural Error: Misclassification on clean data 
● Robust Error: Misclassification on adversarially perturbed data 
● Key Theorem: Robust Error = Natural Error + Boundary Error 
● Robust models need wider decision boundaries 



TRADES

● Empirical risk minimization → improves accuracy 
● Regularization loss → pushes boundary away from data 
● Hyperparameter (lambda) controls balance 

.



Experimental Setup

● Datasets: MINST, CIFAR10 
● Models: CNN, Wide ResNet 
● Threat models: 

○ White-box attacks: PGD, FGSM, C&W 
○ Black-box attacks:  Transferability tests 

● Baseline defenses: Adversarial Training, Logit Pairing



TRADES vs. Baselines

● Under White-box attacks CIFAR10 
○ Trades robust accuracy: 56.6%
○ Madry et al: 47.0%
○ Other defenses < 50%

● Under Black-box attacks: 
○ TRADES outperforms all other 

defenses 
○ Maintains high accuracy against 

unseen attacks. 

.



Strengths & Weaknesses of TRADES

Strengths
● Mathematically grounded → built on 

● formal theorem 

● Improves robust accuracy 

● Flexible and Adjustable 

● Scalable 
.

Weaknesses
● Trade-offs still exist

● Hyperparameter sensitivity

● Limited Attacks

.



Discussion

● Scenario: ML engineer at financial 
institution tasked with developing a 
model that predicts if a customer will 
repay or default on a loan 

● Challenge: Hackers use adversarial 
attacks to slightly modify records, 
tricking the AI into approving risky 
loans 

Discussion Questions: 
● Should we prioritize robustness or 

accuracy? Why? 

● What happens if we set lambda too 
high? How would that impact 
legitimate customers? 

● How do we ensure fairness while 
making the model robust? Could 
robust training affect different 
demographics unfairly? 


