
Safety - Adversarial Robustness
Group 3

What Are Adversarial Samples?

● Definition: Inputs modified to trick AI models into errors.

● Example: Slightly altered images misclassified by DNNs.

● Impact: Security risks (e.g., autonomous vehicles, malware detection).

“Dogˮ
57% confidence

“Catˮ
90% confidence

Modify

Defensive Distillation: Protecting DNNs from
Adversarial Attacks

Why Are DNNs Vulnerable?

● High Sensitivity: Small input changes cause large output shifts.

● Attack Methods:
○ Fast Gradient Sign Method FGSM. [Perturbs inputs along gradient direction.]

○ Jacobian-based Saliency Map Attack. [Exploit model’s input-output sensitivity.]

● Goal: Minimize perturbations to evade detection.

Solution: Defensive Distillation

● Inspiration: Knowledge transfer between DNNs.

● Process:
○ Train initial model with high-temperature softmax.
○ Use soft labels (probabilities) to retrain the same model.

● Result: Smoother decision boundaries, reduced gradients.

How Distillation Reduces Sensitivity

● Key Idea: High temperature T) in softmax smooths outputs.

● Effect:
○ Gradients used in attacks reduced by 1030

○ Perturbations require 8x more features to succeed.

● Result: Smoother decision boundaries, reduced gradients.

Datasets

CIFAR10MNIST

Experimental Results

● Attack success rate drops down quickly with
distillation temperature

Experimental Results

● Influence of distillation on accuracy and robustness

Why Does Temperature Matter?

● Higher T
○ Smoother probability distributions.

■ Low T T1 Spiky (e.g., 0.01, 0.93, 0.06.
■ High T T20 Smooth (e.g., 0.3, 0.4, 0.3.

○ Hiding sensitive gradients, thus lowering adversarial gradients.

● Trade-off: Very high T may slightly reduce accuracy 1.5%.

Practical Implications

● Security: Harder for adversaries to craft stealthy attacks.

● Usability: Minimal impact on model accuracy.

● Applications: Critical systems (healthcare, finance, IoT.

Healthcare Autonomous Vehicles Finance

Conclusion

● Key Takeaways:
○ Defensive distillation drastically reduces attack success rates.
○ Increases robustness by requiring larger perturbations.
○ Easy to implement with existing DNN architectures.

● Future Work: Extend to non-DNN models, real-world testing.

Discussion

● Does distillation work for all attack types?

● How to choose the best temperature?

Provable Defenses via the Convex Outer
Adversarial Polytope

Existing Adversarial Defenses & Limitations

Most existing defenses fail against stronger adversarial attacks due to computational
inefficiency or lack of provable guarantees.

● SMT & Integer Programming: Exact optimization methods to verify robustness. Not
scalable for large networks.

● Regularization-Based Defenses: Reduces adversarial vulnerability by controlling
model sensitivity via weight constraints. Provides no provable robustness
guarantee

Convex Outer Approximation

Why is the adversarial polytope non-convex?

● Neural networks, particularly with ReLU activations, introduce complex decision boundaries,
making adversarial regions highly non-convex.

● This complexity makes robustness verification difficult.

How does convex approximation help?

● Instead of working with a complex, non-convex region, we over-approximate it with a convex
shape.

● This allows us to solve adversarial robustness verification as a linear program LP.

Efficient Optimization via Dual Networks

Instead of solving the original optimization problem directly, we transform it into a dual
problem that can be efficiently solved using a neural network structure.

● Reformulate the problem in dual form, where it can be optimized efficiently using
gradient-based methods.

● Reformulate the problem in dual form, where it can be optimized efficiently using
gradient-based methods.

Computing Activation Bounds

ReLU function is non-convex

→ Relax it using convex approximation

● Bounding the activation range [ℓ,u]
enables efficient robustness
verification.

● Convex relaxation transforms ReLU
into a tractable linear constraint,
ensuring provable adversarial
robustness.

Why does tight bounding matter?

● Looser bounds allow greater adversarial
freedom, making attacks easier.

● Tighter bounds ensure robust
classification, reducing adversarial
vulnerability.

Efficient Robust Optimization

● Traditional deep networks minimize the loss at given data points. Robust
optimization instead minimizes the worst-case loss over an ϵ-ball of perturbations.

● The goal is to ensure the classifier remains robust under adversarial attacks.

● Outer maximization seeks the worst perturbation.
● Inner minimization trains the network to be robust against such perturbations.

Adversarial Guarantees

● Corollary 1 Robust Error Bound Certification of Robustness)
○ If this inequality holds, no perturbation can make the model

misclassify x
○ The robust error measures how many samples do not satisfy this guarantee,

meaning they could still be attacked

● Corollary 2 Detecting Adversarial Examples
○ This method allows us to detect adversarial examples at test time, preventing

attacks before they reach deployment.
○ Unlike traditional defenses, this provides a formal guarantee—every real attack

will be detected.

Experimental Results

● Robust models significantly reduce adversarial vulnerability.
● Certified robust error bounds accurately reflect adversarial robustness.
● There is a trade-off: slightly higher test error, but major gains in adversarial defense.

Scaling Provable Adversarial Defenses

Key Definitions and Current Methods

● In recent years, it has become possible to create deep learning models that come
with formal guarantees of robustness against adversarial examples backed by
proofs that ensure they will remain robust under certain conditions

Early Methods
● Provable guarantees have only been possible for reasonably small sized networks
● Only worked for simple feedforward networks with linear layers followed by

activations like ReLU

Progress has been made toward tackling the challenge of scaling provable defenses to
deeper, more complex architectures

Extending Provable Robustness for General Networks

A k-layer neural network is represented as:

Adversarial Problem Formulation: goal is to make the network robust to perturbations
Perturbation Set: An adversary tries to slightly alter input (x). Perturbations are
constrained within a small 𝝐-bounded set:

The adversary aims to minimize the modelʼs confidence by finding the worst case
perturbation Δ that maximizes the loss:

Leveraging Fenchel Duality

● Uses Fenchel duality to derive provably robust bounds as a dual optimization task

● Each network operation has its own dual formation
● By applying Fenchel Duality to each operation, the dual of the entire network can

be constructed by combining these modular components
● Reduces the problem of bounding adversarial loss to analyzing the dual form of

individual layers
The adversarial problem is lower-bounded as:

Efficient Bound Computation

Earlier methods computed the upper bound by calculating the contributions from every
hidden unit, resulting in quadratic complexity. For ReLU networks with l∞ bounded
perturbations, the computation of the l1 norm requires individual unit processing which
is costly

Solution:
● Introducing nonlinear random projections to approximate these l1 terms, reducing

complexity from quadratic to linear
● The upper bound on robust loss is estimated efficiently, scaling linearly with the

number of hidden units, making robust training feasible for larger models

Cauchy Random Projection

● Cauchy random projections are heavy-tailed making them ideal for
approximating l1 norms using random projections

Estimating the l1 Norm:
● Let 𝜈1 represent the dual networks first layer, and R be a Cauchy random matrix
● L1 norm can be approximated as:

● For terms involving ReLU activations and perturbations:

● Random projections eliminate the need to explicitly pass each hidden unit through
the dual network, saving computation time while maintaining the robustness
bounds

Cascading Models

Problem: Robust training can over-regularize networks, reducing their accuracy on
clean inputs

Robust Cascade: instead of training a single robust classifier, the cascade trains
multiple classifiers sequentially
● Each classifier in the sequence focuses on examples that the previous classifiers

failed to certify as robust
1. Train the first model on the full dataset (f1)
2. Filter Certified Examples
3. Train the next model (f2 only on the uncertified examples of f1)
4. Continue this process training more models refining robust predictions

Why Cascades Work

● Earlier models in the cascade handle easy to certify examples, leaving more
challenging examples for later models to specialize in

● Reduces the burden on each individual model
● Reduces verified robust error significantly compared to single robust classifier
● Allows the use of smaller more efficient models without sacrificing robustness

Experimentation Results

Standard - error rate on the original, unperturbed dataset (clean inputs)

● For MNIST Model achieves error of 3.7% and on best cascade 3.13%
(previous 5.8%

● For CFAR Model achieves best error of 46.1% and 36.4% (previous 80%

Results Cont.

Discussion

● How do cascade models help reduce bias in robust training? Can you
think of any other technique that could complement cascade models
to achieve better results?

● While cascade models improve robustness, they also increase
non-robust error. How would you assess whether this trade-off is
acceptable for different applications?

● What steps can be taken to ensure fairness and prevent bias when
enhancing adversarial robustness in deep learning models as
robustness improvements may not be uniformly effective across
different data subgroups?

Key Improvements

Extending Robust Training to Larger Networks:
● Generalizes the approach to more complex architectures including

those with skip connections and non linear movement
● Utilizes a modular technique to apply methods automatically to any

network structure
Improved Computational Efficiency
● Reduces the complexity to linear, making robust training much more

scalable
Cascade Models
● Introduces cascade models to improve robustness which involves

training multiple stages of classifiers where each stage handles the
examples the previous stage could not classify robustly.

TRAINING DEEP LEARNING MODELS
FOR ADVERSARIAL RESISTANCE

How Can We Train Deep Neural Networks
that are Robust to Adversarial Inputs?

● Natural saddle point (min-max) formulation

● Inner Maximization Problem
○ Aims to find an adversarial version of a given data point x that achieves a

high loss
● Outer Minimization Problem

○ Aims to find model parameters so the “adversarial lossˮ given by the inner
attack problem is minimized

● Allows for resistance against a broad class of attacks rather than defending
against only specifically known attacks

Goals

● How can we produce strong adversarial examples, i.e., adversarial examples that
fool a model with high confidence while requiring only a small perturbation?

● How can we train a model so that there are no adversarial examples, or at least so
that an adversary cannot find them easily?

● Goal: Attaining small adversarial loss gives a guarantee that no allowed attack will
fool the network

Inner Maximization Problem

● Corresponds to finding an adversarial example for a given network and data point

● Goal: To produce adversarial examples that fool a model with high confidence
while only requiring a small perturbation

● Requires us to maximize a highly non-concave function
○ Found using Projected Gradient Descent PGD) which produces adversarial

examples

Finding Adversarial Examples

● Final loss values on adversarially trained networks are significantly smaller than their
standard counterparts

● Local maxima found by PGD all have similar loss values

Outer Minimization Problem

● Goal: To find model parameters that minimize the “adversarial loss ,ˮ the value of
the inner maximization problem

● Method for minimizing the loss function: Stochastic Gradient Descent SGD
○ Replace the input points by their corresponding adversarial perturbations and

train the network on the perturbed input
○ Apply SGD to reduce the loss of the saddle point problem during training

Crucial Component for Adversarial Robustness: Capacity

● Increasing the capacity of the network when training increases robustness
● Small capacity networks sacrifice performance on natural examples to provide

any kind of robustness against adversarial inputs
○ Network converges to always predicting a fixed class

Linear Decision
Boundary

Red stars represent
misclassified

adversarial examples
Robust to Adversarial

Examples

Experiments

● Two Key Elements
○ Train a sufficiently high capacity network
○ Use the strongest possible adversary

■ Adversary of Choice: Projected Gradient Descendant PGD
● Performance increased when given a higher-capacity network

Model Performance Against Different Adversaries

● The MNIST dataset had higher accuracy compared to the CIFAR10 dataset

MNIST CIFAR10

Limitations

● Having a large capacity network is computationally expensive

● Accuracy of networks on different datasets yields differing results
○ High accuracy on MNIST dataset, yet same level of performance not reached

on the CIFAR10 dataset
○ Need to evaluate on more datasets

Discussion Questions

● Can adversarial training fully eliminate adversarial vulnerabilities, or will attackers
always find stronger methods?

● How does adversarial robustness relate to real-world security applications (e.g.,
autonomous vehicles, biometric authentication)?

● What are the ethical considerations of adversarial attacks and defenses? Could
there be unintended consequences of deploying robust models?

Theoretically Principled Trade-Off Between
Robustness and Accuracy

Motivation

● Vulnerable to adversarial attacks
● Can we design models that are both robust and accurate?

Key Idea - Robustness vs. Accuracy

● Natural Error: Misclassification on clean data
● Robust Error: Misclassification on adversarially perturbed data
● Key Theorem: Robust Error = Natural Error + Boundary Error
● Robust models need wider decision boundaries

TRADES

● Empirical risk minimization → improves accuracy
● Regularization loss → pushes boundary away from data
● Hyperparameter (lambda) controls balance

.

Experimental Setup

● Datasets: MINST, CIFAR10
● Models: CNN, Wide ResNet
● Threat models:

○ White-box attacks: PGD, FGSM, C&W
○ Black-box attacks: Transferability tests

● Baseline defenses: Adversarial Training, Logit Pairing

TRADES vs. Baselines

● Under White-box attacks CIFAR10
○ Trades robust accuracy: 56.6%
○ Madry et al: 47.0%
○ Other defenses < 50%

● Under Black-box attacks:
○ TRADES outperforms all other

defenses
○ Maintains high accuracy against

unseen attacks.

.

Strengths & Weaknesses of TRADES

Strengths
● Mathematically grounded → built on

● formal theorem

● Improves robust accuracy

● Flexible and Adjustable

● Scalable
.

Weaknesses
● Trade-offs still exist

● Hyperparameter sensitivity

● Limited Attacks

.

Discussion

● Scenario: ML engineer at financial
institution tasked with developing a
model that predicts if a customer will
repay or default on a loan

● Challenge: Hackers use adversarial
attacks to slightly modify records,
tricking the AI into approving risky
loans

Discussion Questions:
● Should we prioritize robustness or

accuracy? Why?

● What happens if we set lambda too
high? How would that impact
legitimate customers?

● How do we ensure fairness while
making the model robust? Could
robust training affect different
demographics unfairly?

