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Differential Privacy and Fairness in Decisions and 
Learning Tasks



Motivation & Background
● AI/ML increasingly used in decisions: legal, hiring, healthcare, policy 
● DP protects sensitive data – adopted by Census, Google, Apple 
● But: DP noise may harm underrepresented groups 
● Goal: Understand when privacy and fairness align or conflict



Foundations – DP & Fairness
● DP: 

○ A randomized mechanism M: X -> Y is is (ε, δ)-DP if:

● Fairness Concepts: 
○ Individual Fairness: Similar individuals -> similar outcomes 
○ Group Fairness: Equal outcomes across groups 



Decision Tasks vs. Learning Tasks



How DP Affects Fairness
● In Decision Tasks: 

○ DP adds noise to data (e.g., census 
counts) -> can distort decisions 

○ Bias arises when: 
■ The decision function is non-linear 
■ Post processing shifts values 

unevenly 

● In Learning Tasks: 
○ DP methods like Dp-SGD add noise 

during training 
○ Disparate impact occurs due to: 

■ Gradient clipping penalizing 
high-norm groups 

■ Noise disproportionately affecting 
underrepresented samples



Why Does Privacy Hurt Fairness? 
● In Decision Tasks: 

○ Bias from non-linearity (Taylor 
expansion): 
■ Post-processing introduces 

asymmetric errors 

● Learning Tasks: 
○ Minority groups often have: 

■ Higher gradient norms 
■ Data far from decision 

boundary -> affected by noise 
+ clipping 



Mitigating Fairness Under DP
● In Decision Tasks: 

○ Linear proxy problems 
○ Fair projections to reduce group disparity 

● In Learning Tasks: 
○ Group aware gradient clipping 
○ Excessive risk constraints 
○ Early stopping 



Challenges and Takeaway
● Unresolved Issues: 

○ No unified theory linking ε, accuracy, and fairness
○ Hyperparameters affect fairness under DP 
○ Robustness, privacy, and fairness are entangled 
○ Limited tools for DP + fairness auditing 

● Takeaway: 
○ Achieving fairness under DP is hard – but not impossible



The Impact of Differential Privacy on Model Accuracy



Differential Privacy (DP)
● Differential Privacy

○ Bounds the influence of any single input on the output of a computation

● Differentially Private Stochastic Gradient Descent (DP-SGD)
○ A training algorithm that achieves DP by computing gradients on mini-batches, 

clipping individual gradients, and adding noise

● ε
○ Parameter that controls privacy loss - the tradeoff between privacy and             

model accuracy



Limitations of Differential Privacy
● Reductions in training accuracy incurred by DP disproportionately impacts 

underrepresented and complex subgroups
○ Smaller subgroups experience a greater reduction in accuracy compared to larger groups

● DP is biased towards popular elements of the distribution learned

● “The Poor Get Poorer” Effect
○ Classes with lower accuracy in the non-DP model experience the largest accuracy drops 

when DP is applied



Gender Classification
● Model performs gender classification based    

on facial imagery

● 29,500 images of individuals with lighter        
skin color

● 500 images of individuals with darker skin color

● DP-SGD leads to greater accuracy degradation 
for darker-skinned faces compared to 
lighter-skinned ones



Age Classification
● Model estimates an individual’s age based on their facial image
● Accuracy of model is measured across subgroups defined by the intersection of age, 

gender, and skin color attributes
● 60,000 images randomly sampled from Diversity in Faces (DiF) dataset
● Model evaluated on 72 intersections (subgroups)

DP Model less accurate on smaller subgroups “The Poor Get Poorer” Effect



Sentiment Analysis of Tweets
● Model classifies Twitter posts as positive or negative
● Trained on 60,000 STA tweets and 1,000 AAE tweets
● The accuracy of the DP model drops more than the non-DP model

○ Disproportionately degrades accuracy for users writing in African-American English



Species Classification
● Trained on 60,000 images from iNaturalist 

dataset, which contains hierarchically labeled 
images of plants and animals
○ Largest: Aves, 20,574 images
○ Smallest: Actinopterygii, 1,119 images

● Model classifies images into 8 classes

● Accuracy is lower for 
underrepresented/smaller classes

● Accuracy of DP model almost matches the 
accuracy of the non-DP model in 
well-represented classes



Federated Learning
● Participants jointly train a model
● In each round, a global server distributes the current global model to a subgroup
● Each participant in the subgroup trains the the global model on their private data, 

producing their own local model
● The global server aggregates the local models and uses them to update the    global 

model
● The process repeats



Federated Learning of Language Models
● Trained on public Reddit posts made in November 2017 by users who have made 150-500 posts
● Model is trained to predict the next word given a partial word sequence
● Vocabulary is restrict to 50K most frequently used words, and unpopular words, emojis, and 

special symbols are replaced with <unk>
● Accuracy is lower for users with larger vocabularies, and higher for those with smaller 

vocabularies
○ DP model predicts most popular words

Non-DP model is more accurate than DP model Accuracy decreases vocabulary size increases



Effect of Clipping and Noise on MNIST Training
● MNIST is a numbers classification dataset
● Higher accuracy with no clipping and no noise

○ Trade-off between accuracy and privacy



Discussion
● How can the trade-off between accuracy and privacy be mitigated in 

models with differential privacy, particularly in respect to its disparate 
impact on underrepresented/small subgroups?

● In what scenarios would having underrepresented/small subgroups 
benefit a model?



Differentially Empirical Risk Minimization 
Under the Fairness Lens



Excessive Risk & Fairness
● Excessive Risk measures how much performance is lost due to 

privacy:

● Fairness Definition: Excessive Risk Gap
○ Fairness gap for group α:

○ If gap for a is large -> group a suffers more
○ Goal: minimize                to achieve fairness



Two DP Strategies in ERM - Output Perturbation
● Output Perturbation

○ Train standard ERM model, then add noise to final model parameters
○ Advantage: easy to implement, post-processing

● Where Does Unfairness Come From?
○ Excessive risk gap caused by curvature difference:

○ Measures how sensitive the model is to parameter changes for that group
○ Groups with larger Hessian trace are more affected by the same noise



Two DP Strategies in ERM - DP-SGD
● DP-SGD

○ DP-SGD adds noise to each gradient update

● Where Does Unfairness Come From

○ Clipping Risk：
■ Gradient vectors are clipped to a fixed norm bound C
■ Groups with larger gradient norms lose more directional info → These groups may 

learn less → performance degrades
○ Noise Risk:

■ After clipping, Gaussian noise is added. Groups with higher Hessian curvature are 
more sensitive to perturbation → Noise causes more error for these groups



Clipping Risk
● Theorem 3 provides a sufficient condition for which 

a group may have larger excessive risk than another 
solely based on the clipping term analysis.

● It relates unfairness with the average (non-private) 
gradient norms between groups and the clipping 
value C.

● The gradient norm of a group is strongly correlated 
with Input norm ∥X∥.  → groups with larger input 
features are more likely to be affected



Noise risk
● After clipping, Gaussian noise is added to ensure 

differential privacy. Noise affects all groups but its 
impact is not equal

● Theorem 4: If one group has a higher loss curvature 
(i.e., larger Hessian trace), then it will suffer more from 
the same amount of noise:

● What Drives High Curvature?
○ Proximity to decision boundary: Samples near 

the boundary → prediction uncertainty → higher 
curvature

○ Input norm ∥X∥: Larger input vectors → higher 
second-order sensitivity



Mitigation Strategy
● Objective is to minimize both:

○ Differences in gradient norms (clipping risk)
○ Differences in curvature/Hessian (noise risk)

● Modified optimization objective:

● Hessians are expensive to compute, so the paper replaces them with:



Mitigation results

The paper’s core contributions:

● Introduces Excessive Risk Gap as a fairness-aware metric under DP
● Shows how gradient clipping and noise addition can cause disparate impacts
● Identifies input norm and boundary proximity as hidden drivers of unfairness
● Proposes a effective mitigation method that improves fairness without sacrificing utility



Discussion
● If a system treats all data the same (like adding equal noise), but harms 

some groups more than others, is that acceptable?

● Would making group membership (e.g., gender, race) explicit during 
training help or harm fairness?



Are Fairness and Privacy Compatible?

Fairness

Privacy Accuracy



The Data Universe
● Let 𝛘 be a data universe consisting of elements of the form z = (x,a,y) where x are 

the element’s features, a is a protected (binary) binary attribute, and y is a binary 
label

Ex: Loan Applications

● x: applicant’s income and credit score, a: whether the applicant is a racial minority, 
and y: whether the applicant intends to repay her loan

Database: A collection of these individuals (Z = (z1,z2,...,zn) with entries drawn i.i.d from a 
distribution D over 𝛘 

● From this data set train a classifier, h



Prelim: Defining Differential Privacy
● Differential privacy: a strong guarantee for individuals whose data is used for 

training
● Model learns aggregate information without encoding information about specific 

individuals
● Neighboring databases:

○ Neighboring samples: two finite samples differing in at most one entry
○ 𝝵-closeness: two distributions where the statistical distance between them is at most 𝝵

● A randomized algorithm A is (ϵ,𝛿)-differentially private if for all pairs of neighboring 
databases D,D’ and for all sets S ∈ Range(A) of outputs:

● If 𝛿 = 0, A is ϵ-differentially private



Prelim: Exact Fairness - Equal Opportunity
● For the analysis of exact fairness, a database is considered as a 

distribution over the data universe
● Equal Opportunity: equality of group-conditional true positive 

classification rates for different values of the protected attribute (a = 0 
and a = 1) given the positive label (Y=1)

● Used as the notion of exact fairness

● Fairness definition requires equality of group conditional true positive 
classification rates and assumes that Pya > 0 for a,y ∈ {0,1}



The Impossibility of Exact Fairness with DP
● A hypothesis fair under one distribution may be unfair under a 

neighboring one
● DP prevents output change based on small distribution changes
● For two neighboring distributions D and D’

○ Any hypothesis, h, fair on D will not be fair on D’
○ DP constraint implies we cannot change the output significantly between D and D’

● Thus, no algorithm can achieve DP and exact fairness simultaneously with 
better than trivial accuracy



Approximate Fairness
Why?

● Achieving exact fairness is impossible when learning from a finite sample
● Exact fairness is incompatible with differential privacy

Use 𝞪-discrimination:

● More robust to sampling noise and compatible with DP
● A binary predictor, h, is  𝞪-discriminatory if the absolute difference 

between group-conditional true positive rates on the sample Z is no more 
than 𝞪



Approximate Fairness Definitions
● Define subgroup conditional true positive classification rates 

● A classifier is 𝞪-discriminatory if:

● 𝞪 = 0 : exact fairness
● 𝞪 > 0 : approximate fairness



Achieving Approximate Fairness with DP
● Goal: Learn a classifier h such that with high probability:

○ h has low error 
○ h is 𝞪-discriminatory
○ The algorithm is (ϵ,𝛿)-DP

● Use concepts from:
○ Agnostic PAC learning
○ Differential Privacy (Laplace + Exponential Mechanisms)

● Laplace: Privately estimate subgroup sizes (the number of positively 
labeled individuals with A=1)

● Helps ensure no single datapoint affects the subgroup size



Agnostic PAC Learning
● Probably Approximately Correct learning without assuming that a perfect 

hypothesis (h) exists in the class 𝓗
● Find a hypothesis h ∈ 𝓗 such that:

Why?

● Framework handles imperfect data by minimizing error as best as 
possible

● Labels might be noisy and not match any hypothesis in 𝓗



Learning Algorithm: Exponential Mechanism
● Used to select a fair and accurate classifier from 𝓗 
● Each hypothesis receives a utility score: u(Z,h) = errorZ(h) + 𝚪Z(h)

Main ideas:

● Adds enough noise to maintain DP
● Ensures that a hypothesis with small loss is sampled with high probability
● Encourages low error and fairness while preserving privacy



Putting it All Together (Algorithm 1)



Efficient Algorithm for Approximately Fair Classification
Problem: Exponential Mechanism requires evaluating all hypotheses in 𝓗 (all linear 
classifiers)

Private-FairNR Algorithm (Private Fair No-Regret)

● Use no-regret dynamics in a game between:
○ Learner (cast as  two-player zero-sum game): minimizes error + fairness loss
○ Auditor: identifies fairness violations

● Relies on oracles for cost-sensitive classification
● Privacy is preserved using Prave Follow-The-Perturbed-Leader

○ Private, online learning algorithm used in each round
○ Adds noise using Laplace to ensure privacy in repeated interactions



Discussion
● Can fairness and privacy ever be fully aligned in practice, or must we 

always accept trade-offs?
○ Are there real-world contexts where you'd prioritize one over the other?
○ What would be the risks of prioritizing privacy over fairness (or vice versa)?

● What kinds of real-world systems would benefit from using a fair & private 
learner like the one proposed in this paper?

● How should practitioners balance fairness and privacy in deployment 
scenarios?


