Privacy and Fairness
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Differential Privacy and Fairness in Decisions and
Learning Tasks




Motivation & Background

Al/ML increasingly used in decisions: legal, hiring, healthcare, policy
DP protects sensitive data - adopted by Census, Google, Apple

But: DP noise may harm underrepresented groups

Goal: Understand when privacy and fairness align or conflict
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Foundations - DP & Fairness

e DP:

o Arandomized mechanism M: X -> Y is is (g, §)-DP if:

P[M(z) = y] < e - P[M(a') =y + 9

e Fairness Concepts:

o Individual Fairness: Similar individuals -> similar outcomes
o Group Fairness: Equal outcomes across groups



Decision Tasks vs. Learning Tasks
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Figure 2: Setting analyzed in this survey.




How DP Affects Fairness

In Decision Tasks:

DP adds noise to data (e.g., census
counts) -> can distort decisions
Bias arises when:

@)

@)

The decision function is non-linear
Post processing shifts values
unevenly

In Learning Tasks:

DP methods like Dp-SGD add noise
during training

Disparate impact occurs due to:

O

O

Gradient clipping penalizing
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Why Does Privacy Hurt Fairness?

In Decision Tasks:

(@)

Bias from non-linearity (Taylor
expansion):

1
B = S Hp,(z) - Varly

Post-processing introduces
asymmetric errors

Learning Tasks:
Minority groups often have:

(@)

Higher gradient norms
Data far from decision
boundary -> affected by noise
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Figure 3: Bias and variance in DP post-processing.




Mitigating Fairness Under DP

e In Decision Tasks:

o Linear proxy problems
o  Fair projections to reduce group disparity

e In Learning Tasks:
o Group aware gradient clipping
o Excessive risk constraints
o Early stopping



Challenges and Takeaway

e Unresolved Issues:

o No unified theory linking €, accuracy, and fairness
o Hyperparameters affect fairness under DP

o Robustness, privacy, and fairness are entangled
Limited tools for DP + fairness auditing

e Takeaway:
o Achieving fairness under DP is hard - but not impossible

O



The Impact of Differential Privacy on Model Accuracy




Differential Privacy (DP)

e Differential Privacy
o Bounds the influence of any single input on the output of a computation

e Differentially Private Stochastic Gradient Descent (DP-SGD)
o Atraining algorithm that achieves DP by computing gradients on mini-batches,
clipping individual gradients, and adding noise

o &
o Parameter that controls privacy loss - the tradeoff between privacy and
model accuracy



Limitations of Differential Privacy

e Reductions in training accuracy incurred by DP disproportionately impacts

underrepresented and complex subgroups
o Smaller subgroups experience a greater reduction in accuracy compared to larger groups

e DPis biased towards popular elements of the distribution learned

e "“The Poor Get Poorer” Effect

o Classes with lower accuracy in the non-DP model experience the largest accuracy drops
when DP is applied



Gender Classification

e Model performs gender classification based e EmmLighter Skin
on facial imagery 80- B Darker Skin
>
@
e 29,500 images of individuals with lighter |
. O
skin color S 40
e 500 images of individuals with darker skin color ~ 29]
2 eps=9.16 eps=5.69
e DP-SGD leads to greater accuracy degradation DEHEP e aiiB) (5=p1, 2=1.0)
for darker-skinned faces compared to Model

lighter-skinned ones



Age Classification

e Model estimates an individual's age based on their facial image

e Accuracy of model is measured across subgroups defined by the intersection of age,
gender, and skin color attributes

e 60,000 images randomly sampled from Diversity in Faces (DiF) dataset

e Model evaluated on 72 intersections (subgroups)
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Sentiment Analysis of Tweets

e Model classifies Twitter posts as positive or negative
e Trained on 60,000 STA tweets and 1,000 AAE tweets

e The accuracy of the DP model drops more than the non-DP model
o Disproportionately degrades accuracy for users writing in African-American English
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Species Classification

e Trained on 60,000 images from iNaturalist
dataset, which contains hierarchically labeled
images of plants and animals
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Federated Learning

e Participants jointly train a model

e Ineachround, a global server distributes the current global model to a subgroup

e FEach participant in the subgroup trains the the global model on their private data,
producing their own local model

e The global server aggregates the local models and uses them to update the global
model

e The process repeats

Server coordinating
the training of a
global Al model
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Federated Learning of Language Models

Trained on public Reddit posts made in November 2017 by users who have made 150-500 posts
Model is trained to predict the next word given a partial word sequence

e Vocabulary is restrict to 50K most frequently used words, and unpopular words, emojis, and
special symbols are replaced with <unk>

e Accuracy is lower for users with larger vocabularies, and higher for those with smaller

vocabularies
o  DP model predicts most popular words

(a) Frequency count (b) DP model accuracy relative
to non-DP vs vocabulary size
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Effect of Clipping and Noise on MNIST Training

e MNIST is a numbers classification dataset

e Higher accuracy with no clipping and no noise
o Trade-off between accuracy and privacy
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Discussion

e How can the trade-off between accuracy and privacy be mitigated in
models with differential privacy, particularly in respect to its disparate
impact on underrepresented/small subgroups?

e In what scenarios would having underrepresented/small subgroups
benefit a model?



Differentially Empirical Risk Minimization
Under the Fairness Lens




Excessive Risk & Fairness

e Excessive Risk measures how much performance is lost due to
privacy: )
R(0; D) = Em[L(6; D)] — L(67; D)

e Fairness Definition: Excessive Risk Gap
o Fairness gap for group a:

§a = |Ra(0) — R(6)]

o Ifgapforaislarge -> group a suffers more
o  Goal: minimize max, ¢, to achieve fairness



Two DP Strategies in ERM - Qutput Perturbation

e Output Perturbation
o Train standard ERM model, then add noise to final model parameters  § = §* + N(0, 021)
o Advantage: easy to implement, post-processing

Abalone Churn
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o Excessive risk gap caused by curvature difference: ool _ = - =
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£ §A20'2 |Tr(H}) — Tr(Hy)| Figure 1: Correlation between excessive risk gap and

Hessian Traces at varying of the privacy loss e.
o Measures how sensitive the model is to parameter changes for that group
o Groups with larger Hessian trace are more affected by the same noise




Two DP Strategies in ERM - DP-SGD
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private term due to noise
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o Clipping Risk:
m Gradient vectors are clipped to a fixed norm bound C
m  Groups with larger gradient norms lose more directional info — These groups may
learn less — performance degrades
o Noise Risk:
m After clipping, Gaussian noise is added. Groups with higher Hessian curvature are
more sensitive to perturbation — Noise causes more error for these groups



Theorem 3. Let p, = \P:ip| be the fraction of training samples
in group z € A. For groups a,b € A, Rﬁbp > RZI'P whenever:
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Noise risk

e After clipping, Gaussian noise is added to ensure
differential privacy. Noise affects all groups but its

impact is not equal Hi — =
0.50
&
e Theorem 4: If one group has a higher loss curvature o 025
(i.e., larger Hessian trace), then it will suffer more from ¢ 500
. = o
the same amount of noise: S
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o Proximity to decision boundary: Samples near
the boundary — prediction uncertainty — higher
curvature

o Input norm J/ X/ : Larger input vectors — higher
second-order sensitivity




Mitigation Strategy

e Objective is to minimize both:
o Differences in gradient norms (clipping risk)
o Differences in curvature/Hessian (noise risk)

e Modified optimization objective: min £(6: D)+ > ( [gn, — 90,90 = Go)| + 72 [Tr(H}) - Tr(HL)))
aceA

Where:
e [:standard ERM loss
* gp,: group-level gradients

» Hj: group-level Hessian

e y;: Controls gradient alignment (for clipping fairness)

e ~y9: Controls curvature similarity (for noise fairness)

e Hessians are expensive to compute, so the paper replaces them with: Tr(#?) ~ Ex.p, [1 - Zf;k(X)]
k



Mitigation results
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The paper’s core contributions:

e Introduces Excessive Risk Gap as a fairness-aware metric under DP

e Shows how gradient clipping and noise addition can cause disparate impacts

e Identifies input norm and boundary proximity as hidden drivers of unfairness

e Proposes a effective mitigation method that improves fairness without sacrificing utility




Discussion

e |f a system treats all data the same (like adding equal noise), but harms
some groups more than others, is that acceptable?

e Would making group membership (e.g., gender, race) explicit during
training help or harm fairness?



Are Fairness and Privacy Compatible?

Fairness

Privacy



The Data Universe

e Lety be a data universe consisting of elements of the form z = (x,a,y) where x are
the element’s features, a is a protected (binary) binary attribute, and y is a binary
label

Ex: Loan Applications

e x:applicant'sincome and credit score, a: whether the applicant is a racial minority,
and y: whether the applicant intends to repay her loan

Database: A collection of these individuals (Z = (z,,z
distribution D over g

,i-Z,) With entries drawn i.i.d from a

e From this data set train a classifier, h



Prelim: Defining Differential Privacy

e Differential privacy: a strong guarantee for individuals whose data is used for
training

e Model learns aggregate information without encoding information about specific
individuals

e Neighboring databases:
o Neighboring samples: two finite samples differing in at most one entry
o {-closeness: two distributions where the statistical distance between them is at most

e Arandomized algorithm A is (g,0)-differentially private if for all pairs of neighboring
databases D,D’" and for all sets S € Range(A) of outputs:

Pr[A(D) € S] < exp(e) Pr[A(D’) € 8] + 6.

e Ifo=0,Aise-differentially private



Prelim: Exact Fairness - Equal Opportunity

e For the analysis of exact fairness, a database is considered as a
distribution over the data universe

e Equal Opportunity: equality of group-conditional true positive
classification rates for different values of the protected attribute (a =0
and a = 1) given the positive label (Y=1)

e Used as the notion of exact fairness

Fua () =Pih =1 = A=4q]

e Fairness definition requires equality of group conditional true positive
classification rates and assumes that Pya >0 foray €{0,1}



The Impossibility of Exact Fairness with DP @

e A hypothesis fair under one distribution may be unfair under a
neighboring one
e DP prevents output change based on small distribution changes

e For two neighboring distributions D and D’
o Any hypothesis, h, fair on D will not be fair on D’
o DP constraint implies we cannot change the output significantly between D and D’
e Thus, no algorithm can achieve DP and exact fairness simultaneously with
better than trivial accuracy



Approximate Fairness

Why?
e Achieving exact fairness is impossible when learning from a finite sample
e Exact fairness is incompatible with differential privacy

Use a-discrimination:;

e More robust to sampling noise and compatible with DP
e A Dbinary predictor, h, is a-discriminatory if the absolute difference
between group-conditional true positive rates on the sample Z is no more

than a



Approximate Fairness Definitions

e Define subgroup conditional true positive classification rates

Fualh) = Pelh=1|Y"= ijj, A =]

e A classifier is a-discriminatory if:

Z 7%
max h) — h)| < a.
ye{o,l}“yo( ) Yyl( )|_

e a=0:exactfairness
e a>0:approximate fairness



Achieving Approximate Fairness with DP

e Goal: Learn a classifier h such that with high probability:
o hhaslow error
o hisa-discriminatory
o The algorithm is (€,0)-DP

e Use concepts from:

o Agnostic PAC learning
o Differential Privacy (Laplace + Exponential Mechanisms)

e Laplace: Privately estimate subgroup sizes (the number of positively
labeled individuals with A=1)
e Helps ensure no single datapoint affects the subgroup size



Agnostic PAC Learning

e Probably Approximately Correct learning without assuming that a perfect
hypothesis (h) exists in the class H
e Find a hypothesis h € H such that:

Prlerr(h) < OPT +a] > 1 - 3,
Why?

e Framework handles imperfect data by minimizing error as best as
possible
e Labels might be noisy and not match any hypothesis in H



Learning Algorithm: Exponential Mechanism

e Used to select a fair and accurate classifier from H
e Each hypothesis receives a utility score: u(Z,h) = error,(h) + I' (h)

Main ideas:

e Adds enough noise to maintain DP

e Ensures that a hypothesis with small loss is sampled with high probability
e Encourages low error and fairness while preserving privacy



Algorithm 1 Approximately Fair Private Learner A(H, Z, n,€)

Input: hypothesis class H, sample Z of size n, privacy parameter ¢
Set u(Z,h) = T4 (h) + err?(h) and § = exp(—y/n)

Sample Y ~ Lap(1/e)

Set M = min, |Z1,| +Y —In(1/6)(1/€)

Set A = A,,2_1 - %

Sample hypothesis h € H with probability proportional to

e-u(Z,h)

2A)

exp(—

Output: sampled hypothesis h

Putting it All Together (Algorithm 1)



Efficient Algorithm for Approximately Fair Classification

Problem: Exponential Mechanism requires evaluating all hypotheses in H (all linear
classifiers)

Private-FairNR Algorithm (Private Fair No-Regret)

e Use no-regret dynamics in a game between:
o Learner (cast as two-player zero-sum game): minimizes error + fairness loss
o Auditor: identifies fairness violations
e Relies on oracles for cost-sensitive classification
e Privacy is preserved using Prave Follow-The-Perturbed-Leader
o Private, online learning algorithm used in each round
o Adds noise using Laplace to ensure privacy in repeated interactions



Discussion

e (Can fairness and privacy ever be fully aligned in practice, or must we

always accept trade-offs?

o Are there real-world contexts where you'd prioritize one over the other?
o  What would be the risks of prioritizing privacy over fairness (or vice versa)?

e What kinds of real-world systems would benefit from using a fair & private
learner like the one proposed in this paper?

e How should practitioners balance fairness and privacy in deployment
scenarios?



