
LLMs: Prompt Injection

Group #4 (CS 6501: Responsible AI)

Introduction and Key Terms

• Large Language Models (LLMs) have scaled over time and have come with tradeoffs
and benefits!
o Increasing the number of parameters in a model has shown to be useful in improving upon certain

NLP tasks
o Fine-Tuning vs. K-shot prompting
o Can also improve task-agnostic, few-shot performance

• Meta-Learning
o Model develops a broad set of skills/pattern recognition abilities during training

• In-Context Learning
o Series of methods that are used to determine how well a model can adapt to certain scenarios (i.e.

Context, Common NLP tasks)

• Data Contamination
o Components of the training data are also present in the evaluation data
o Gives model an unfair advantage and could bias the overall results/metrics

ICL Different Approaches

• Few-Shot Approaches
o Model is given a few examples to mimic desired behavior, but no model weights are updated
o Requires less resources than fine-tuning, but not as accurate

• One-Shot Approach
o Meant to simulate traditional human thought process

• Zero-Shot Approach
o Very convenient + robust approach
o Could be "unfairly" hard for certain tasks; closest to how humans perform their tasks

GPT-3 Variants

• Main Hypothesis: Given that In-Context Learning requires the model to absorb many
characteristics of tasks, skills, and data, would it be reasonable to assume that ICL
abilities would show strong gains with parameter scaling?

• GPT-3 Model
o Trained on the same model and architecture as GPT-2
o Includes modified initialization, pre-normalization, and reversible tokenization

CommonCrawl Dataset

• CommonCrawl Dataset
o Dataset variants might not be up to the same caliber/standard (i.e. Data Contamination)
o Steps to fix issues in the dataset:

▪ Filter the CommonCrawl dataset with respect to high-quality reference corpora
▪ Perform fuzzy deduplication across documents to reduce redundancy and preserve data integrity
▪ Add high-quality corpora to the training data mix to augment the dataset

Experiment Results (Speed-Run)

Language Modelling, Cloze, Completion Tasks

• LAMBADA
o Assesses the modelling of long-range dependencies via cloze-form tasks.

• HellaSwag (lol)
o Pick the best "ending" to story/set of instructions

• StoryCloze
o Pick the best "ending" to a short (i.e. 5 sentence) story

Closed Book Question-Answering

• Three different datasets
o NaturalQS, WebQS, TriviaQA
o Goal: Can a model/system answers questions without open-text references?

Translation Tasks

• Four Languages
o English, French, German, Romanian
o Model does noticeably better on translations TO English, not FROM English

Winograd-Style Tasks

• Winograd Tasks
o Determine the ambiguous pronoun given a sentence; usually semantically unambiguous in human

interaction.
o Can LLMs "reason?"

Common Sense Reasoning

• Datasets related to physical and scientific reasoning:
o PIQA – Questions about the Phyiscal World
o ARC – MC Science Questions (3rd-9th grade)

Reading Comprehension

• Datasets
o CoQA – Freeform Conversation Dataset
o DROP – Tests discrete reasoning in reading comprehension
o QuAC – Student-Teacher interactions
o RACE – English-based Multiple-Choice Dataset

SuperGLUE Benchmark

Natural Language Inference (NLI)

• Goal:
o Understand the relationship between two sentences

Synthetic/Qualitative Tasks

• Multiple Synthetic/Qualitative Tasks
o Arithmetic
o Word Scrambling and Word Manipulation
o SAT Analogies
o News Article Generation

• General Results
o As the number of parameter utilized for model + few shot examples increase, results become a lot

better
o Difficult for humans to detect automated News Article Generation as the number of parameters in a

model increases

Synthetic/Qualitative Tasks

General Results

Key Takeaways and Critical Analysis

• GPT-3
o Main Issue: Data Contamination
o Attempted deduplication, was not fully successful
o Secondary Solution: Contamination Analysis

• Intersection of Fine-Tuning vs. LLMs
o Context and domain dictate whether one is better than the other

How Can We Know What Language Models
Know?

Authors: Zhengbao Jiang, Frank F. Xu, Jun Araki, Graham Neubig [May 2022]

Motivation

• Study tackles key questions:
o How much knowledge do pre-trained language models (LMs) contain?
o How can we accurately retrieve this knowledge?
o Are existing probing methods underestimating what LMs “know”?

• The Problem:
o Language models are often tested using handcrafted prompts
o Different prompts yield different results making manual prompts unreliable

• The Objective:
o To automatically discover better prompts to improve knowledge retrieval
o Use data-driven prompt generation instead of relying on human intuition

Knowledge Retrieval from LMs

• What we are trying to retrieve:
o Facts stored in language models, expressed as triplets (subject, relation, object)
o Example (Obama, place_of_birth, Hawaii)

• How do we manually retrieve knowledge?
o Using cloze-style prompts
o The LM predicts the missing token

The Problem with Manual Prompts

• LM responses vary based on slight wording changes

• Example:
o "Obama is a ____ by profession." Vs "Obama worked as a _____."
o "X is affiliated with Y religion" vs "X who converted to Y"

• Conclusion:
o Manual prompts provide a lower bound on what LMs know
o Better prompts might extract more accurate knowledge

Methods – Improving Prompts 1

• Mining-Based Prompt Generation
o Extract prompts from real-world text (i.e Wikipedia) using distant supervision

• Example:
o "X was born in Y" is extracted from sentences mentioning both X and Y

• Uses 2 methods:
o Middle-word prompts: extracts words between subject and object
o Dependency-based prompts: uses syntax trees to extract prompts

Methods – Improving Prompts 2

• Paraphrasing-Based Prompt Generation
o Uses back-translation (ex. English -> French -> English) to create diverse prompts

Original Prompt Paraphrased Prompt

“X is a subclass of Y” “X belongs to the category
Y”

“X is located in Y” “X can be found in Y”

Methods – Improving Prompts 3

• Prompt Ensembling
o Combines multiple prompts for higher accuracy
o Different prompts work better for different facts

• Sub-Methods:
o Rank-based ensembling: averages the best-performing prompts
o Optimized ensembling: assigns weights to prompts based on accuracy

The Experiment

• Datasets:
o LAMA Benchmark (subset: T-REx) – contains Wikidata triples
o LAMA-UHN – A curated version filtering out easy-to-guess facts
o Google-RE – fjf

• Models Evaluated:
o BERT-base and BERT-large
o ERNIE – entity-enhanced language model
o KnowBERT – integrates knowledge graphs

• Evaluation Metrics
o Micro-averaged accuracy: % of correct predictions across all facts
o Macro-averaged accuracy: % of correct predictions across unique objects

Single-Prompt Results
Mined prompts result in
larger performance gain
compared to manual
prompts

Prompt-Ensembling Results Prompt Ensembling boosts
performance

Paraphrased Prompts Back-translated prompts
improved accuracy

Additional Study Findings

• Language Models are highly sensitive to small wording changes
o "X plays in Y position" vs "X plays at Y position" -> 23% accuracy difference

• More complex ensembles give better accuracy
o Optimized weighting outperforms simple averaging

• Different Language Models store knowledge differently
o ERNIE > BERT : external knowledge graphs help recall
o KnowBERT < BERT : Struggles with single-token facts

Broader Implications

LMs are sensitive to wording changes, so certain prompts might reinforce biases
or fail to retrieve information for marginalized groups

LMs retrieve answers based on probability, not reasoning, but often do not explain
why they chose a fact (need examples)

Who is held accountable if an LM retrieves incorrect or biased information?

Optimized prompts can be weaponized to manipulate LM outputs

Discussion 1
(5-7 min)

1. ML-based systems might be heavily used
to translate a new language or to
understand new technical terms. How
can few-shot learning be used to help
ML-based systems quickly adapt to
these new tasks without requiring large
amounts of training data?

2. How can we design effective prompts to
obtain accurate information? Do you
know of any other approaches that might
help to limit LLM hallucinations?

How Prompt Injection attacks LLMs

[1] Liu, Yi, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang, Tianwei Zhang et al. "Prompt Injection attack
against LLM-integrated Applications." arXiv preprint arXiv:2306.05499 (2023).

[2] Nvidia. "Securing LLM Systems Against Prompt Injection." https://developer.nvidia.com/blog/securing-llm-systems-against-
prompt-injection/ (2023)

https://developer.nvidia.com/blog/securing-llm-systems-against-prompt-injection/
https://developer.nvidia.com/blog/securing-llm-systems-against-prompt-injection/

Definition

Prompt injection is a new attack technique specific to LLMs that enables attackers to
manipulate the output of the LLMs.

Attack Methods

Overview of HOUY, a novel black-box prompt injection attack technique

Results

New Challenges

A typical sequence diagram for a LangChain Chain with a single external call A detailed analysis of the sequence of actions used in llm_math, with
expected and actual security boundaries overlaid

Analysis

There are several powerful attack methods:

1. HOUYI is a structured and generalizable black-box prompt injection framework that

is more effective than prior heuristic approaches.

2. Nvidia finds that prompt injection is made more dangerous by the way that LLMs

are increasingly being equipped with “plug-ins” for better responding to user

requests.

Discussion 2
(5-7 min)

1. Malicious attackers may develop
malware designed to trick ML-based
systems into performing inappropriate
actions. What can be done to prevent
such attacks from happening in the first
place? What safeguards could be
implemented?

2. What are some initial propositions to
evaluate the security of LLM-based
systems routinely? What do you think
would be some good practices to ensure
that LLM-based systems are safely
maintained?

Universal Adversarial Triggers for Attacking and
Analyzing NLP

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, Sameer Singh."Universal
Adversarial Triggers for Attacking and Analyzing NLP".

Introduction

What are adversarial attacks and why are they important?
• Adversarial attacks involve modifying input data to intentionally mislead machine learning models into

making incorrect predictions. In NLP, such attacks can cause models to misclassify spam, answer
questions incorrectly, or even generate harmful content.

What is the main research goal of the paper ?
• Traditional adversarial examples are input-specific. This paper explores whether it's possible to find a

short sequence of tokens that can universally affect any input—called Universal Adversarial Triggers.

Universal Adversarial Trigger Generation

To discover universal adversarial triggers—input-agnostic sequences that can mislead
NLP models—the authors propose a gradient-guided token search algorithm.

• Step 1: Trigger Initialization

• Step 2: Gradient Computation

• Step 3: HotFlip-Based Token Replacement

• Step 4: Beam Search Optimization

• Step 5: Cross-Task Testing and Transferability

Trigger Initialization

Trigger Initialization refers to the process of creating an initial sequence of tokens that will
later be optimized into a universal adversarial trigger.

• Key Characteristics:
o Example: randomly or systematically initializing a short sequence of tokens, such as "the the the".
o Fixed Length: Typically 1–3 tokens to balance attack strength and stealthiness.
o Input-Agnostic: No reliance on input semantics
o Simple Start: Often initialized with common or neutral tokens

Gradient Computation

• These gradients indicate how each token contributes to the model’s prediction
and show the direction in which the tokens should be changed to increase the loss
(i.e., make the model perform worse).

o The current trigger sequence is prepended to a batch of input examples (e.g., movie
reviews).

o The model processes these inputs and computes the loss—how wrong the model's
prediction is compared to the correct answer.

o Then, the gradient of the loss is calculated with respect to the trigger token embeddings.

HotFlip-Based Token Replacement

At this step, Gradient information is used to intelligently replace tokens in the trigger
sequence to make the attack more effective.

• Use the gradient of the loss with respect to each token’s embedding from the previous step.

• Apply a first-order Taylor approximation to estimate how replacing the token affects loss.

• Select the top-k candidate tokens that are predicted to most increase the loss.

• Apply beam search to explore combinations and find the most adversarial trigger sequence.

Beam Search Optimization

Beam Search aims to efficiently search for the most harmful combination of trigger
tokens that maximize the model's prediction error (i.e., the loss).

 Procedure:
• Start with an initial trigger (e.g., "the the the").

• For each position, generate new trigger sequences by replacing with candidate tokens.

• Score each new sequence using the model’s loss or prediction probability.

• Keep the top-k highest-scoring sequences (the "beam") for the next round.

• Repeat until the full trigger sequence is built and optimized.

Cross-Task Testing and Transferability

It tests whether the generated trigger sequence is effective across different tasks and
models, demonstrating its generalizability and real-world threat potential.

• Cross-task generalization
o Does the same trigger work on different NLP tasks, such as sentiment analysis, natural language

inference (NLI), or question answering?

• Cross-model transferability
o Can a trigger generated for one model (e.g., with GloVe embeddings) still fool another model (e.g.,

using ELMo or a larger GPT-2 variant)?

NLP tasks

• Text Classification (e.g., sentiment analysis, SNLI)
o Goal: Make the model predict the wrong class (e.g., classify a positive review as negative, or

"entailment" as "contradiction").

• Reading Comprehension (e.g., SQuAD)
o Goal: Force the model to extract a specific, incorrect answer span (e.g., "to kill american people").

• Conditional Text Generation (e.g., Language generation based on input prompts)
o Goal: maximize the likelihood of generating a set of harmful or racist outputs, regardless of the user
 input.

Experimental Results
and Attacks

Text Classification
• Sentiment Analysis:

o Prepending trigger "zoning tapping fiennes"
drops accuracy from 86.2% ➝ 29.1%

• Natural Language Inference (SNLI):
o Adding trigger "nobody" causes 99.43% of

Entailment examples to be misclassified as
Contradiction

• Cross-model Transfer:
o Triggers are effective across architectures (e.g.,

GloVe ➝ ELMo)

Experimental Results
and Attacks

Reading Comprehension (SQuAD)
o Trigger: "why how ; known because : to kill american

people."
 ⇒ Produces malicious answers to benign questions

• Success Rate: Up to 50% (BiDAF, ELMo)

Experimental Results
and Attacks
GPT-2 Language Modeling
o Trigger: "TH PEOPLEMan goddreams Blacks" ⇒
 causes GPT-2 to generate racist content

• Manual Evaluation:
o 98% offensive content
o 63% racist content

Conclusion

• Universal Triggers Reveal Model Vulnerabilities:
o The study demonstrates that short, input-agnostic token sequences—called universal adversarial

triggers—can drastically reduce the accuracy of NLP models across multiple tasks, including text
classification, reading comprehension, and text generation.

• Transferability Across Models:
o These triggers are transferable: even if a trigger is crafted for one model (e.g., GloVe-based), it can

effectively fool another (e.g., ELMo or GPT-2). This indicates structural vulnerabilities shared across
model architectures and embeddings.

Final Discussion

1. What are some adversarial attacks
that you have heard about outside of
the NLP space? Would those
methodologies be applicable here?

2. How could we protect against
Universal Adversarial Triggers after
learning about them? Is there a way to
prevent them before they're found?

Paper Citations

• Jiang, Z., Xu, F. F., Araki, J., & Neubig, G. (2019). How Can We
Know What Language Models Know? ArXiv.
https://arxiv.org/abs/1911.12543

• Liu, Yi, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang,
Xiaofeng Wang, Tianwei Zhang et al. "Prompt Injection attack
against LLM-integrated Applications." arXiv preprint
arXiv:2306.05499 (2023).

• Nvidia. "Securing LLM Systems Against Prompt Injection."
https://developer.nvidia.com/blog/securing-llm-systems-
against-prompt-injection/ (2023)

• Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, Sameer
Singh."Universal Adversarial Triggers for Attacking and
Analyzing NLP".

https://arxiv.org/abs/1911.12543

	Slide 1: LLMs: Prompt Injection
	Slide 2: Introduction and Key Terms
	Slide 3: ICL Different Approaches
	Slide 4: GPT-3 Variants
	Slide 5: CommonCrawl Dataset
	Slide 6: Experiment Results (Speed-Run)
	Slide 7: Language Modelling, Cloze, Completion Tasks
	Slide 8: Closed Book Question-Answering
	Slide 9: Translation Tasks
	Slide 10: Winograd-Style Tasks
	Slide 11: Common Sense Reasoning
	Slide 12: Reading Comprehension
	Slide 13: SuperGLUE Benchmark
	Slide 14: Natural Language Inference (NLI)
	Slide 15: Synthetic/Qualitative Tasks
	Slide 16: Synthetic/Qualitative Tasks
	Slide 17: General Results
	Slide 18: Key Takeaways and Critical Analysis
	Slide 19: How Can We Know What Language Models Know?
	Slide 20: Motivation
	Slide 21: Knowledge Retrieval from LMs
	Slide 22: The Problem with Manual Prompts
	Slide 23: Methods – Improving Prompts 1
	Slide 24: Methods – Improving Prompts 2
	Slide 25: Methods – Improving Prompts 3
	Slide 26: The Experiment
	Slide 27: Single-Prompt Results
	Slide 28: Prompt-Ensembling Results
	Slide 29: Paraphrased Prompts
	Slide 30: Additional Study Findings
	Slide 31: Broader Implications
	Slide 32: Discussion 1 (5-7 min)
	Slide 33: How Prompt Injection attacks LLMs
	Slide 34: Definition
	Slide 35: Attack Methods
	Slide 36: Results
	Slide 37: New Challenges
	Slide 38: Analysis
	Slide 39: Discussion 2 (5-7 min)
	Slide 40: Universal Adversarial Triggers for Attacking and Analyzing NLP
	Slide 41: Introduction
	Slide 42: Universal Adversarial Trigger Generation
	Slide 43: Trigger Initialization
	Slide 44: Gradient Computation
	Slide 45: HotFlip-Based Token Replacement
	Slide 46: Beam Search Optimization
	Slide 47: Cross-Task Testing and Transferability
	Slide 48: NLP tasks
	Slide 49: Experimental Results and Attacks
	Slide 50: Experimental Results and Attacks
	Slide 51: Experimental Results and Attacks
	Slide 52: Conclusion
	Slide 53: Final Discussion
	Slide 54: Paper Citations

