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An Introduction



Guess Who?
● Choose an individual to play
● We’ll ask Yes/No questions
● What is this metaphor?



Timeline

● What is privacy
● Ways privacy can / have been disturbed
● How to protect privacy 
● How to implement the privacy protection
● Discussion and Q&A
● How these all come together
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Introduction to Privacy



What is Privacy?
● Data is collected nearly everywhere
● Result: much of the data contains sensitive 

personal information ⇒ privacy concerns
● Efforts for privacy include GDPR, Title XIII, 

Biden’s Executive Order on AI
● Privacy – the right to be free from being 

observed or disturbed by other people
● Information privacy – the right to have some 

control over how your personal information is 
collected and used



A Strong Privacy Definition
● Compositionality

○ Privacy protections should degrade in a controlled manner when applied multiple 
times to prevent cumulative privacy loss

● Post-processing immunity
○ Once data is privatized, further analysis should not weaken its privacy guarantees, 

ensuring future-proof protection

● Group privacy
○ Privacy mechanisms should account for groups, ensuring controlled and 

quantifiable degradation as group size increases

● Quantifiable privacy-accuracy tradeoffs
○ Privacy definitions should provide measurable trade-offs between privacy 

protection and data accuracy to enable informed decision-making



Motivation

● Key Question: What are some motivations for protecting users’ 
privacy?

● Some examples
○ Legal and regulatory compliance
○ Reduce cybersecurity risks
○ Ethical research and data sharing
○ Identity theft and fraud
○ Reducing unwanted marketing or 

surveillance
○ etc.



Anonymization



Case Study: Introduction
● The Netflix Prize Competition (2006 to 2009)
● Aim: Challenge researchers to improve their 

recommendation system
● Competition material: training dataset of user 

data
○ User ID (anonymized)
○ Movie ID
○ Rating
○ Date 

● Anonymization – removal or masking of 
identifying data ⇒  prevent recovery of 
personal identities



Case Study: Outcome
● Researchers cross-referenced the dataset with 

public information from online movie database 
IMDb 
○ → matched users between the datasets 

based on similar movie ratings at similar 
times

○ IMDb data not de-identified → 
re-identification ⚠

● Outcome of discovery: class action lawsuit vs 
Netflix



Anonymization: Data Anonymization
● Type 1: Data anonymization 

○ E.g., Netflix case study
○ Why does it fail?

■ Lack of formal privacy guarantees
● Post-processing immunity



Anonymization: K-Anonymization
● Type 2: K-anonymization 

○ For each record in the dataset, there are least k-1 other 
records with identical values based on certain 
quasi-identifiers
■ ⇒ Generalizing or suppressing identifiable attributes

○ How it works
■ Groups individuals who share the same 

quasi-identifiers into “anonymized” k clusters

19*** 30*** 60-70 30-40

Zip Code Age



Anonymization: K-Anonymization
● Type 2: K-anonymization 

○ Why does it fail?
■ Lack of group privacy

● Protects individuals, not groups
● E.g., group of same characteristics (e.g., 

age, zip code)
■ Lack of composition

● Combination of datasets can ⇒ 
re-identification

● E.g., dataset with employee’s ages and 
dataset of credit scores, both with same 
age and zip code attributes



Database Reconstruction 
Attacks



Database Reconstruction Attack (DRA)
● Concept

○ Attackers use published summary statistics 
to reconstruct individual records.

○ Even without direct access to raw data, 
mathematical constraints allow attackers to 
infer missing information.

● Theoretical Fundamental 
○ Every statistic leaks some private 

information (Dinur & Nissim, 2003)



How DRA Works
● Step 1: Extract constraints from published data (population, median 

age, racial distribution, etc.)

● Step 2: Translate constraints into mathematical equations (e.g., 

summation rules)

● Step 3: Use mathematical solvers (SAT solvers, optimization 

models) to infer possible individual record

● Step 4: Reconstruct original records partially or fully



An Example of DRA

Yes!

Summary Statistics
Median age, mean age, racial breakdown, material status distribution

Can attackers figure out each person’s age, gender and race from 
these “harmless” statistics?



Public Data



Translate constraints into Math equations

Each statistic acts as a constraint, 
narrowing down the possible data 
combination.

● A constraint is a rule that 
limits possible values.

● Possible combination reduced 
to 30.

● Combining gender and racial 
constraints, possible 
individual records are 
inferred.



SAT (Satisfiability) Solver



Reconstruct the original data

Even a small dataset with a 
few public statistics can be 
nearly fully reconstructed.



Why DRA is dangerous
“Sober Warnings” from Dick et al.

● An attacker need not reconstruct the entire 

underlying database in its internal schema for 

data subject confidentiality to be at risk.

● Modern optimization techniques increase DRA 

effectiveness.

● Large-scale, nonconvex optimization techniques 

can exfiltrate entire rows of sensitive data with 

confidence.



Statistical Disclosure Limitation (SDL)
● Definition: the process of treating confidential data to protect the 

identity and responses of data subjects’ information in the 
published data.

● Common SDL techniques
○ Cell suppression: Hide small counts to prevent direct identification
○ Top-coding: Limit the maximum value for certain variable to reduce 

uniqueness
○ Input Noise-injection: Add random variations to prevent reconstruction 
○ Swapping: Exchange attributes between similar records



Limitations of traditional SDL methods
● Problem 1: SDL relies on obfuscation, not mathematical privacy 

guarantees.

● Problem 2: Modern DRA attacks bypass these methods easily.

● Problem 3: SDL reduces data utility without ensuring privacy.

● Aggregate statistics with high precision are essentially 

unprotected microdata.



● Scale: 330 million people across 8.5 million blocks, 
extensive statistical release

● Law: individual responses must remain confidential (Title 
13, U.S. Code).

● Issue: DRA could reveal private information with 
summary statistics.

● Challenges:
○ Census Bureau previously relied on SDL methods 

(e.g., cell suppression)
○ Modern optimization + high-precision statistics → 

SDL protection ineffective

Case study: 2020 U.S. Census



Discussion

● What are ways that we can protect (informational) 
privacy?
○ What are the benefits and or downsides of your 

method(s) to protect privacy?

● Is it possible to define a stronger definition of privacy 
beyond the four properties?
○ Properties: compositionality, post-processing 

immunity, group privacy, quantifiable 
privacy-accuracy tradeoffs



Differential Privacy (DP) as a solution
● Adding controlled noise ensure that individual data points do not 

significantly impact published statistics.

● Key feature:
○ Privacy Budget: controls the trade-off between privacy and accuracy

○ Global noise injection: prevents pattern recognition

● Impact:
○ Stronger privacy protection against DRA

○ Some researchers argued that data accuracy suffered



Differential Privacy: 
Foundation



Beyond the Census

http://www.youtube.com/watch?v=-JRURYTfBXQ


What is Data Privacy, loosely?

Data privacy techniques have the goal of allowing analysts to learn 
about trends in sensitive data, without revealing information specific to 
individuals.



Randomized Response
Did you cheat in this course?
1. Flip a coin

2. If tails - respond truthfully

3. If heads - flip a coin again
a. If heads - respond “Yes”

b. If tails - respond “No”

Plausible deniability: 
A “Yes” answer is not 
incriminating since it occurs 
with a probability of ¼ 
regardless of whether or not 
the student cheated.



Real Example

How is this different from the scenario on the last slide with 
coin tosses? Is it better, worse, or the same at creating plausible 
deniability?



Illustrative Example



Illustrative Example

Flip each bit with probability of 25%



Illustrative Example

Overall structure is 
preserved



Fundamental Property of Privacy

No technique is perfect. No perfectly accurate and deterministic 
privacy technique can satisfy our requirements, and that 
randomization is essential for privacy.

A lack of randomness leads to failure in composition.



Datasets and Queries

A numeric query:
- f : D → R ⊆ Rr that maps a dataset in some real vector space



Adjacency
Two datasets D and D′ 

Add/remove adjacency

Exchange adjacency



Adjacency
For two datasets D and D′ ,

Add/remove adjacency
• D and D’ are neighbors if one is a 1-row add/remove difference 

away from each other
• According to unbounded differential privacy
• ⇒ sizes of D and D’ are different by one row

Exchange adjacency
• D and D’ are neighbors if one is a 1-row exchange difference away 

from each other
• According to bounded differential privacy
• ⇒ sizes of D and D’ are equal



Units of Privacy
● Unit of privacy = formal definition of “neighboring” in DP 

guarantee
● E.g., 

○ “One person” 
■ Privacy guarantee for whole person

○ Apple’s DP with “person-day”
■ Privacy guarantee for one person on a single day

● Unit of privacy can have privacy failures
○ E.g., Apple’s DP does NOT protect trends in data occurring 

across multiple days, even for individuals
○ “One-person” – good default, usually avoids surprises

● Key assumption for defining neighboring datasets: each 
individual’s data is contained in one row of data



Units of Privacy
• Other units of privacy either to 

• Make data easier to analyze
• Add difficulty to tie data values to individuals

• Simple assumption to easily formalize the definition of 
neighboring datasets: each individual’s data is 
contained in one row of data

• Ture ⇒ can define neighboring datasets formally and retain 
“one person” unit of privacy

• False ⇒ best to avoid using a different unit of privacy 
whenever possible



Global Sensitivity

How does a single individual’s data impact overall analysis?



Global Sensitivity

Global sensitivity for this query is 1
- Adding or removing a single individual in the 

dataset can affect the final count by at most 1



Global Sensitivity

Age range A = [0, 100]

Task:

compute the average age of all 
individuals in the dataset



Differential Privacy, Formally

ε is called the privacy loss
- controls the level of privacy
- closer to 0 implies stronger privacy



Differential Privacy, Formally

ε is called the privacy loss
- controls the level of privacy
- closer to 0 implies stronger privacy

δ is the failure threshold
- allows DP not to hold with 

probability up to δ



Differential Privacy, Formally
Often δ is set to 0
-  Called (ε,0)-differentially private or ε-differentially private

ε is called the privacy loss
- controls the level of privacy
- closer to 0 implies stronger privacy



Differential Privacy, Visually



DP of Randomized Response
Did you cheat in this course?
1. Flip a coin

2. If tails - respond truthfully

3. If heads - flip a coin again
a. If heads - respond “Yes”

b. If tails - respond “No”

ln3-differential privacy



DP of Real Example

ln2-differential privacy



DP of Real Example

Privacy is broken for 
“no” responders



What Differential Privacy Promises

● Compositionality
● Group Privacy
● Post-processing immunity,
● Quantifiable privacy-accuracy tradeoffs

Ensures that individuals are not exposed to any additional 
harm due to their data being included in the private database 
x compared to if their data had not been part of x



What Differential Privacy Promises

● Compositionality
○ Sequential Composition

■ Property applies when multiple DP mechanisms are 
applied to the same dataset

■ Cumulative privacy loss is bounded by the sum of the 
individual privacy parameters

○ Parallel Composition
■ Property applies when dataset is split into disjoint chunks 

and mechanism is ran on each chunk
■ Privacy cost remains at the level of a single mechanism’s 

privacy parameter ε
● Mechanism applied k times on k disjoint subsets ⇒ 

privacy cost = ε, not kε



Where to Guarantee DP

Which is better?



Where to Guarantee DP
Centralized Model:
● Data is collected, stored, and processed at a central location managed by a 

trusted data curator
● The curator has direct access to raw data and ensures privacy mechanisms are 

properly applied.
● This model assumes the central entity will responsibly handle and protect data

Distributed (Local) Model:
● Data remains decentralized, residing on personal devices or local databases
● Privacy-preserving algorithms are applied locally before sending processed 

data to a central authority

Which is better?



Statistical Queries vs Private Selection



Differential Privacy:
Design & Implementation



How Do We Design a DP Algorithm

Add noise to the real answer while
1. Not leaking too much information about the dataset
2. Keeping noisy answers closer to the real answer



How Do We Add Noise
Laplace distribution

Laplace mechanism s is global sensitivity,
Lap(S) is the Laplace 
distribution sampling,
ε  is the privacy parameter 
controlling the level of privacy

μ is a location parameter and b is a scale parameter

DP definition



How Do We Add Noise
Laplace distribution

Laplace mechanism

μ is a location parameter and b is a scale parameter

DP definition

** Proof of Laplace mechanism is ε-DP: https://arxiv.org/abs/2411.04710 

s is global sensitivity,
Lap(S) is the Laplace 
distribution sampling,
ε  is the privacy parameter 
controlling the level of privacy

https://arxiv.org/abs/2411.04710


Laplace: ε-Differential Privacy



How Much Noise is Enough?
● What is enough noise to prevent re-identification?
● Attempt to break into dataset:

○ Result: 1 == income column for Karrie’s row (privacy violation)

● Attempt to break into dataset with Laplace Mechanism:

○ Result: 0.00437885… == too noisy to reliably tell



How Much Noise is Enough?
● DP adds noise to gradient when training
● Noise in DP mechanism CAN ⇒ model accuracy to 

become worse

Tradeoffs
● Smaller values of ε ⇒ less accurate models
● More iterations ⇒ larger privacy cost for DP 

mechanism (worse model)
○ Need to use smaller ε for each iteration ⇒
○ Upwards noise scaling 

Hard to balance iterations/accuracy and scale of noise



Laplace: Accuracy Guarantee



Laplace: Accuracy Guarantee



Laplace Mechanism: Computing Average

Consider a dataset containing the ages of 10, 000 individuals:
● ages ranging from 0 to 100 years

Task: compute the average age while ensuring differential privacy



Laplace Mechanism: Computing Average



Laplace Mechanism: Computing Average



Laplace Mechanism: Computing Average



How Do We Add Noise
Exponential mechanism
• DP method that selects an object from a set based on a scoring 

function
• With dataset D, set of objects H, score function s(D, h), it outputs object h 

with probability proportional to

• ε  = the privacy parameter controlling the level of privacy
• Δs = global sensitivity of the utility / score function

• ε  controls trade-off between privacy and utility
• Higher ⇒ more weight on quality of selection, less privacy
• Lower ⇒ more randomness / privacy, less utility



How Else Do We Add Noise
Exponential mechanism
• DP method that selects an object from a set based on a scoring 

function
• With dataset D, set of objects H, score function s(D, h), it outputs object h 

with probability proportional to

• ε  = the privacy parameter controlling the level of privacy
• Δs = global sensitivity of the utility / score function



How Do We Add Noise
Exponential mechanism
● DP method that selects an object from a set based on a scoring 

function
○ With dataset D, set of objects H, score function s(D, h), it outputs object h 

with probability proportional to

○ ε  = the privacy parameter controlling the level of privacy
○ Δs = global sensitivity of the utility / score function

** Proof of Exponential mechanism is ε-DP: https://arxiv.org/abs/2411.04710 

https://arxiv.org/abs/2411.04710


Exponential Mechanism



Exponential Mechanism
For the exponential mechanism, accuracy is determined by 
guaranteeing, with high probability, that the output by the mechanism 
has a high score, as close as possible to optimality



Exponential Mechanism



DP Efficiency
● Time efficiency

○ Iterative algorithms and complex query processing can ⇒ high 
computational costs

■ Especially with high-dimensional queries
● Space efficiency

○ Storing large histograms, high counts, and detailed representations 
⇒ significant memory usage

● Optimization techniques: convex optimization, iterative 
refinement, dimension reduction, query batching

● Efficiency bottlenecks
○ High computational complexity, significant memory overhead
○ Tradeoff between privacy guarantees and performance



DP Synthetic Data
● Data can be generated from DP algorithms that 

○ Have added calibrated noise to preserve privacy
○ Capture key statistical properties of original data

● Goal: answer queries of original while maintaining privacy

● Simple synthetic representations e.g., counts, histograms to 
capture key data features

● Marginals – projections of the joint data distribution onto a 
subset of dimensions

● Tradeoff: high-dimensional synthetic data
○ Exponential growth in combos ⇒ high computational overhead
○ Increased noise requirements; can degrade performance



Discussion



Q&A
● There’s a tradeoff between accuracy 

and privacy. How much privacy do we 
need? When do we need both accuracy 
and privacy? 
● Think of some applications where 

accuracy is more important than 
privacy and vice versa.

● How could we apply differential privacy 
to deep learning algorithms?  Could it 
improve an algorithm's fairness or 
robustness? What mechanisms could 
we implement it into?

● The census is an important database 
that affects millions of people, where 
differential privacy is needed for proper 
protection to the block level. Are there 
other databases that need differential 
privacy implementation? 



https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-226.pdf

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-226.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-226.pdf




Putting It All Together



Key takeaways
● Traditional privacy methods are insufficient - DRAs are real threats

● Differential privacy provides a stronger defense, but it’s still 

evolving

● Future challenge: balancing data usability and privacy protection

● To learn more about and practice code for DP, you can go to the 

following resource: https://programming-dp.com/cover.html 

https://programming-dp.com/cover.html


Thank You
CS 6501: Responsible AI
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